Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BC ⊥ OA ⇒ BE = EC
E là trung điểm của OA ⇒ OE = AE và OA=OB= 3cm
OE=\(\dfrac{OA}{2}\) =\(\dfrac{3}{2}\) = 1.5 cm
ΔHBO vuông tại E :
BE=\(\sqrt{OB^2-OE^2}\)
=\(\sqrt{3^2-1.5^2}\) =\(\dfrac{3\sqrt{3}}{2}\) cm
⇒ BC= 2BE
= 2. \(\dfrac{3\sqrt{3}}{2}\) = \(3\sqrt{3}\) cm
O A E B C
3 căn 3/5 nhé
nếu cần trình bày thì bn kẻ hình ra
rồi có ob=oa=oc
ad đl pytago cho tam giác vuoong nnhes
Gọi I là trung điểm của AB
Suy ra: IO = IA = (1/2).OA = 3/2
Ta có: BC ⊥ OA (gt)
Suy ra: góc (OIB) = 90 °
Áp dụng định lí Pitago vào tam giác vuông OBI ta có: O B 2 = B I 2 + I O 2
Suy ra: B I 2 = O B 2 - I O 2
Ta có: BI = CI (đường kính dây cung)
B O C A I
- Gọi I là giao điểm của BC và OC
( IO = IA = 1,5cm ) ( OB = OA = 3cm )
Áp dụng đlí Py - ta - go cho tam giác vuông IBO ( ^I = 90^o ) , ta có :
\(OB^2=IB^2+IO^2\)
\(3^2=IB^2+1,5^2\)
\(IB^2=3^2-1,5^2=9-2,25=6,75\)
\(\Rightarrow IB=\sqrt{6,75}\approx2,6\)
Mà \(OA\perp BC\Rightarrow IC=IB\)( t/c đường kính vuông với dây cung )
=> BC = 2 . IB = 2 . 2,6 = 5,2
Vậy : BC = 5,2cm
Đáp án A
Gọi H là trung điểm của BC.
Do dây BC vuông góc với OA tại H nên ta có:
Áp dụng định lí Pytgo vào tam giác OHB vuông tại H ta có:
Theo định lí quan hệ vuông góc đường kính và dây ta có: H là trung điểm BC nên:
Ta có: OA = OB (bán kính)
OB = BA (tính chất hình thoi).
Nên OA = OB = BA => ΔAOB đều => ∠AOB = 60o
Trong tam giác OBE vuông tại B ta có:
BE = OB.tg∠AOB = OB.tg60o = R.√3
a: Xét (O) có
OI là một phần đường kính
BC là dây
OI\(\perp\)BC tại I
Do đó: I là trung điểm của BC
Xét tứ giác OBAC có
I là trung điểm của BC
I là trung điểm của OA
Do đó: OBAC là hình bình hành
mà OB=OC
nên OBAC là hình thoi
Xét ΔOAB có OA=OB=BA
nên ΔOAB đều
a) Ta có OA⊥BC⇒MB=MC.
Mặt khác: MA=MO nên tứ giác ABOC là hình bình hành.
Hình bình hành này có hai đường chéo vuông góc nên là hình thoi. Vậy tứ giác ABOC là hình thoi
b) Ta có BA=BO (hai cạnh hình thoi)
mà BO=OA (bán kính) nên tam giác ABO là tam giác đều.
Suy ra góc BOA=60∘
Ta có EB là tiếp tuyến ⇒EB⊥OB.
Xét tam giác BOE vuông tại B, có:
BE=BO⋅tg60∘=R.tg600=R√3.
Created by potrace 1.16, written by Peter Selinger 2001-2019
vì Dây BC của đường tròn vuông góc với OA tại trung điểm của OA, gọi giao điểm của BC với OA tại trung điểm OA là M
\(=>OM=AM=\dfrac{1}{2}OA=\dfrac{1}{2}.3=1,5cm\)
\(=>OB=OC=R=3cm\)=>tam giác OBC cân tại O có OM là đường cao nên cũng là trung tuyến=>OB=OC
pytago cho tam giác BMO
\(=>OB=OC=\sqrt{OB^2-OM^2}=\sqrt{3^2-1,5^2}=\dfrac{3\sqrt{3}}{2}cm\)
\(=>BC=OB+OC=3\sqrt{3}cm\)
ta có B,C thuộc đường tròn (o) có bán kính OA=3cm nên OB=OC=3cm
. Dây BC của đường tròn vuông góc với OA tại trung điểm OA .gọi điểm đó là G thì OG=1,5cm
tam giác OBG vuông nên GB2=OB2-GB2
GB=\(\frac{3\sqrt{3}}{2}\)cm
tam giác BOC cân có BC vuông góc với OA nên GB=GC
=>BC=2GB=2.\(\frac{3\sqrt{3}}{2}\)=\(3\sqrt{3}cm\)