K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

Ta có:    B A M ^ = B ^    ( g t )     C A N ^ = C ^     ( g t )  

Þ AM // BC;   AN // BC  (vì có cặp góc so le trong bằng nhau).

Þ 3 điểm M, A, N thẳng hàng (vì qua điểm A chỉ vẽ được một đường thẳng song song với BC).

Vậy MN // BC mà d ⊥ B C  nên d ⊥ M N      (1)

Ta có: A M = A B ;   A N = A C  

AB = AC (gt) nên AM = AN.              (2)

Từ (1) và (2) Þ d là trung trực của MN

1 tháng 8 2017

a) Ta có MN vuông góc với AB ( do MN là đường trung trực của đoạn thẳng AB theo giả thuyết nên suy ra)
   và đường thẳng m cũng vuông góc với đoạn thẳng AB ( theo giả thiết)
nên từ đó ta suy ra MN//m (đpcm)
b) Từ MN//m ta suy ra MIC=ICB (hai góc so le trong)
                             mà ICB= 60 độ => MIC=60 độ 
c) Ta có HIB= HIN+NIB
    Mặt khác HIN=MIC=60 độ ( so le  trong)
       và NIB=90 độ (gt) 
  suy ra HIB= 60+90=150 độ
d) Vì theo giả thiết ta có đường thẳng a đi qua C và song song với MN và điểm C lại nằm trên cùng một đường thẳng m với điểm B mà đường thẳng m lại song song với đường thẳng MN nên suy ra đường thẳng a trùng với đường thẳng m và đi qua B

12 tháng 3 2020

x C A O B K y D

Gọi K là giao điểm của CO và BD

Xét \(\Delta\)AOC và \(\Delta\)BOK có :

AO = BO(gt)

\(\widehat{OAC}=\widehat{OBK}\left(=90^0\right)\)

\(\widehat{O}\)chung

=> \(\Delta\)AOC = \(\Delta\)BOK(g.c.g)

=> OC = OK(hai cạnh tương ứng)

     AC = BK(hai cạnh tương ứng)

Xét \(\Delta\)COD và \(\Delta\)KOD có :

CO = KO(gt)

\(\widehat{OCD}=\widehat{OKD}\left(=90^0\right)\)

OD cạnh chung

=> \(\Delta\)COD = \(\Delta\)KOD(c.g.c)

=> CD = KD(hai cạnh tương ứng)

Do đó : CD = DB + BK = DB + AC