K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NH
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
5 tháng 3 2017
Cho tam giác ABC. M là điểm nằm trong tam giác chứng minh MA+MB< CA+CB
SG
1
18 tháng 5 2022
Xét ΔABD có \(\widehat{B}>90^0\)
nen AD là cạnh lớn nhất
=>AB<AD(1)
XétΔADC có \(\widehat{ADC}>90^0\)
nên AC là cạnh lớn nhất
=>AD<AC(2)
Từ (1) và (2) suy ra AB<AD<AC
Tham khảo:
Để chứng minh \( QM + QD < AM + AD \), chúng ta có thể sử dụng bất đẳng thức tam giác. Trong trường hợp này, \( QM \) và \( QD \) là độ dài các đoạn thẳng, nên chúng ta có thể áp dụng bất đẳng thức tam giác để chứng minh điều cần chứng minh.
Bất đẳng thức tam giác cho biết rằng trong một tam giác bất kỳ, tổng độ dài của hai cạnh bất kỳ phải lớn hơn độ dài cạnh còn lại. Áp dụng bất đẳng thức tam giác vào tam giác \( AMD \), ta có:
\[
AM + AD > MD
\]
Tương tự, áp dụng bất đẳng thức tam giác vào tam giác \( QMD \), ta có:
\[
QM + QD > MD
\]
Kết hợp hai bất đẳng thức trên, ta có:
\[
(QM + QD) + (AM + AD) > 2 \times MD
\]
Nhưng vì \( Q \) nằm trong tam giác \( AMD \), nên \( MD \) không lớn hơn \( MA \) (vì \( Q \) nằm trong tam giác \( AMD \), nên \( MD \) không vượt quá \( MA \)). Vì vậy:
\[
2 \times MD < MA + AD
\]
Tổng hợp lại, ta có:
\[
(QM + QD) + (AM + AD) > MA + AD
\]
Tức là:
\[
QM + QD > AM + AD
\]
Vậy, đã chứng minh được \( QM + QD < AM + AD \).