K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2021

A B C D E K

a, Vì tam giác ABC cân tại A nên AB=AC;B=C

    Xét tam giác AEB và tam giác ADC có:

    Góc A chung 

    AB=AC(cmt)

    AD=AE(gt)

=> Tam giác ADC=tam giác AEB

=>BE=CD và góc ABE= góc ACD

b, Ta có

   A+B+C=180(tổng 3 góc của tam giác)

  B+C=180-A    (1)

Và A+D+E=180

    D+E=180-A   (2)

 Từ (1) và (2)=>B+C=D+E

Mà B=C và D=E

=>C=E

Mà 2 góc ở vị trí đồng vị 

=>DE//BC

c, Ta có 

  B=C (cmt)

  góc ABE= góc ACD(cm ở câu a)

Mà B-ABE=EBC

và  C-ACD=DCB

=> góc EBC = góc DCB

=> tam giác KBC cân tại K

1 tháng 7 2016

a) Xét tam giác ABE và tam giác ADC: 

AE=AC(theo gt tam giác ABC cân ) 

góc A chung 

AE=AD(theo gt) 

=> Tam giác ABE=tam giác ADC(c.g.c) 

nên BE=CD(dpcm) 

b) Vì tam giác ABE=tam giác ACD nên góc ABE=góc ACD( 2 góc tương ứng) 

c) Xét Tam giác DKB và tam giác EKC 

góc DKB=góc EKC(đối đỉnh)

AB=AC(tam giác ABC cân) mà AD=AE (gt) =>DB=EC

góc DBK= góc ECK 

=>tam giác DKB=tam giác EKC(g.c.g) 

=>KB=KC(2 cạnh tương ứng) 

=>tam giác KBC là tam giác cân .

2 tháng 7 2016

A B C D E K

a) Xét \(\Delta\) BAE và \(\Delta\) CAD có:

AB = AC ( \(\Delta\) ABC cân tại A )

BAE = CAD ( chung góc A )

AD = AE ( giả thiết )

.=> \(\Delta\) BAE = \(\Delta\) CAD ( c . g . c ) (1)

=> BE = CD ( 2 cạnh tương ứng )

Vậy BE = CD ( đpcm)

b) Ta có:  \(\Delta\) BAE = \(\Delta\) CAD ( chứng minh (1) )

=> ABE = ACD (  2 góc tương ứng )

Vậy ABE = ACE ( đpcm )

c) Ta có: \(\Delta\) ABC cân tại A ( giả thiết )

=> ABC = ACB ( tính chất tam giác cân )

hay DBC = ECB (2)

Xét \(\Delta\) DBC và \(\Delta\) ECB có:

CD = BE ( chứng minh a)

DBC = ECB ( chứng minh (2) )

BC là cạnh chung

=> \(\Delta\) DBC = \(\Delta\) ECB ( c . g . c )

=> DCB = EBC ( 2 góc tương ứng )

hay KCB = KBC 

Xét \(\Delta\) KBC có: KCB = KBC

=> \(\Delta\) KBC cân tại K

Vậy \(\Delta\) KBC cân tại K 

Chuk bn hk tốt ! vui

a: Xét ΔABE và ΔACDcó

AB=AC

góc BAE chung

AE=AD

=>ΔABE=ΔACD

=>BE=CD

b: ΔABE=ΔACD

=>góc ABE=góc ACD

c: góc ABE+góc KBC=góc ABC

góc ACD+góc KCB=góc ACB

mà góc ABE=góc ACD và góc ABC=góc ACB

nên góc KBC=góc KCB

=>KB=KC

d: AB=AC

KB=KC

=>AK là trung trực của BC

=>A,K,I thẳng hàng

7 tháng 3 2022

a.Xét tam giác ABE và tam giác ACD, có:

\(\widehat{A}:chung\)

AD = AE ( gt )

AB = AC ( ABC cân )

Vậy tam giác ABE = tam giác ACD ( c.g.c )

b.Xét tam giác DBC và tam giác ECB, có:

BD = CE ( AB=AC; AD=AE )

góc B = góc C ( ABC cân )

BC: cạnh chung 

Vậy tam giác DBC = tam giác ECB ( c.g.c )

=> góc DCB = góc EBC ( 2 góc tương ứng )

=> Tam giác KBC là tam giác cân và cân tại K

c.Xét tam giác AKB và tam giác AKC có:

AB=AC ( ABC cân )

góc ABK = góc ACK ( góc B = góc C; góc KBC = góc KCB )

AK: cạnh chung 

Vậy tam giác AKB = tam giác AKC ( c.g.c )

=> góc BAK = góc CAK ( 2 góc tương ứng )

Mà Tam giác ADE cân tại A ( AD=AE )

=> AK là đường cao 

=> AK vuông DE (1)

Mà Tam giác KBC cân tại K 

=> AK vuông với BC (2)

Từ (1) và (2) => DE//BC

d. Ta có: AK là đường cao ( cmt ) cũng là đường trung tuyến

Mà M là trung điểm BC 

=> A,K,M thẳng hàng

 

a: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD
DO đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔABC có AD/AB=AE/AC
nên DE//BC

c: Xét ΔBDC và ΔCEB có 

DB=EC

DC=EB

BC chung

Do đó; ΔBDC=ΔCEB

Suy ra: \(\widehat{KBC}=\widehat{KCB}\)

hay ΔKBC cân tại K

19 tháng 4 2016

Tự kẻ hình nha !!!

 a)Tam giác ABC cân tại A =>AB=AC;góc B= góc C

D thuộc AB => BD+AD= AB

C thuộc AC =>CE + EA = AC

Mà AB=AC nên AD=EA

Xét tam giác AEB và tam giác ADC:

AD=EA( cmt)

AB=AC(cmt)

góc A: góc chung

=>tam giác AEB = tam giác ADC (c.g.c)

=>BE=CD(2 cạnh tương ứng)

b)theo a) ta có tam giác AEB=tam giác ADC=>góc ABE= góc ACD( 2 góc tương ứng)

c)ta có góc B= góc C và góc ABE = góc ACD

Mà góc ABE + góc EBC =  goc B

      Góc ACD +góc DCB= góc C =>góc EBC = góc DCB 

Tam giác KBC có: góc EBC = góc DCB =>tam giác KBC là tam giác cân tại K

    * nhớ k cho mk nhé!!!

22 tháng 4 2021

hướng dẫn:

a) chứng minh tam giác ABE = tam giác ACD (c.g.c) (1)

** câu này dễ rồi nhé, A^ chung, AB = AC, AD = AE**

=> BE = CD

b) (1) => ABE^ = ACD^

c) Dễ thấy BD = CE

từ đó dễ chứng minh tam giác BDC = tam giác CEB (c.c.c)

=> BCD^ = EBC^ => BCK^ = CBK^ => tam giác KBC cân

19 tháng 4 2016

 a) Vì tg ABC là tg cân nên AB = AC mà AD = AE => AB – AD = AC – AE

=> BD = CE => ĐPCM

Xin lỗi mình chỉ giải đc phần a thôi

19 tháng 4 2016

bạn chọn mình rồi mình mới làm

16 tháng 4 2015

Xét tg: EAB và tg DAC có : 

AE = AD ( gt) 

^A chung 

AB = AC ( gt) 

=> tg EAB = tg DAC ( c.g.c)   => BE = CD; ^ABE = ^ACD ( cặp cạnh, góc tương ứng = nhau) 

c) Xét tg BDC và tg CEB có: 

BC chung 

^DBC = ^ECB (gt) 

BD =CE 

=> tg BDC = tg ECB ( c.g.c)   => ^BDC = ^CEB ( cặp góc tuong úng )

xét tg BDK và tg CEK có 

^DBE = ^ ECD (cmt) 

BD = CE 

^BDC = ^CEB (cmt) 

=> tg BDK = tg CEK ( g.c.g)    => BK = CK  => tg BKC cân tại K.