\(\dfrac{3}{x}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

Câu hỏi của Đinh thị hồng xuyến - Toán lớp 9 - Học toán với OnlineMath

\(D=\left(\frac{3}{4}x+\frac{3}{x}\right)+\left(\frac{1}{4}x+\frac{1}{2}y\right)+\left(\frac{1}{2}y+\frac{9}{2y}\right)\ge3+\frac{1}{4}\left(x+2y\right)+3\ge3+2+3=8\)

dấu"=" xảy ra khi x=2;y=3

28 tháng 6 2018

mình sửa lại đề chút nhé!

tìm GTLN của P nha

6 tháng 7 2020

\(P\ge2x^2+16y^2+\frac{2}{x}+\frac{3}{y}+2\left(2-x-2y\right)\)

\(=\,{\frac { 2\left( x+1 \right) \left( x-1 \right) ^{2}}{x}}+{\frac { \left( 4\,y+3 \right) \left( 2\,y-1 \right) ^{2}}{y}}+14 \geq 14\)

Đẳng thức xảy ra khi $x=1,\,y=\frac{1}{2}.$

PS: Có một cách dùng AM-GM$,$ bạn tự làm:P

12 tháng 12 2018

Hình như bạn ghi sai đề rồi

NV
26 tháng 2 2019

\(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\Rightarrow\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=2\)

Lại có \(\dfrac{1}{2x+y+z}=\dfrac{1}{x+y+x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)

Tương tự \(\dfrac{1}{x+2y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{4}\left(\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

Cộng vế với vế: \(P\le\dfrac{1}{2}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)=\dfrac{1}{2}.2=1\)

\(\Rightarrow P_{max}=1\) khi \(x=y=z=\dfrac{3}{4}\)