Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\left(\frac{3}{4}x+\frac{3}{x}\right)+\left(\frac{1}{4}x+\frac{1}{2}y\right)+\left(\frac{1}{2}y+\frac{9}{2y}\right)\ge3+\frac{1}{4}\left(x+2y\right)+3\ge3+2+3=8\)
dấu"=" xảy ra khi x=2;y=3
\(P\ge2x^2+16y^2+\frac{2}{x}+\frac{3}{y}+2\left(2-x-2y\right)\)
\(=\,{\frac { 2\left( x+1 \right) \left( x-1 \right) ^{2}}{x}}+{\frac { \left( 4\,y+3 \right) \left( 2\,y-1 \right) ^{2}}{y}}+14 \geq 14\)
Đẳng thức xảy ra khi $x=1,\,y=\frac{1}{2}.$
PS: Có một cách dùng AM-GM$,$ bạn tự làm:P
\(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(\Rightarrow\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=2\)
Lại có \(\dfrac{1}{2x+y+z}=\dfrac{1}{x+y+x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)
Tương tự \(\dfrac{1}{x+2y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\)
\(\dfrac{1}{x+y+2z}\le\dfrac{1}{4}\left(\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)
Cộng vế với vế: \(P\le\dfrac{1}{2}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)=\dfrac{1}{2}.2=1\)
\(\Rightarrow P_{max}=1\) khi \(x=y=z=\dfrac{3}{4}\)
Câu hỏi của Đinh thị hồng xuyến - Toán lớp 9 - Học toán với OnlineMath