Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cô si ta có :
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3\)
\(\Rightarrow BĐT\)cần \(CM\): \(3>\frac{9}{a+b+c}\Leftrightarrow a+b+c>3\)
Mà a,b,c > 0 => abc > 0
\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a^2=b^2=c^2=1\end{cases}\Leftrightarrow}a=b=c=1\)
a) a2 + b2 + c2 ≥ ab + bc + ca
Nhân 2 vào từng vế của bất đẳng thức
<=> 2( a2 + b2 + c2 ) ≥ 2( ab + bc + ca )
<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) ≥ 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )
=> đpcm
Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)
b) a2 + b2 + c2 + 3 ≥ 2( a + b + c )
<=> a2 + b2 + c2 + 3 ≥ 2a + 2b + 2c
<=> a2 + b2 + c2 + 3 - 2a - 2b - 2c ≥ 0
<=> ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) + ( c2 - 2c + 1 ) ≥ 0
<=> ( a - 1 )2 + ( b - 1 )2 + ( c - 1 )2 ≥ 0 ( đúng )
=> đpcm
Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\Leftrightarrow a=b=c=1\)
Chép Sách giải bạn ơi
Trang 104 sach nang cao va phat trien toan 7
toán 8 hay toán 7 vậy? khó quá!