Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ab}{6+a-c}=\frac{ab}{a+b+c+a-c}=\frac{ab}{2a+b}\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(\frac{ab}{2a+b}\le\frac{ab}{9}.\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)=\frac{2b+a}{9}\)
Chứng minh tương tự ta có:
\(\frac{bc}{2b+c}\le\frac{bc}{9}.\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)=\frac{2c+b}{9}\)
\(\frac{ca}{2c+a}\le\frac{ac}{9}.\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)=\frac{2a+c}{9}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của 3 BĐT trên ta có:
\(\frac{ab}{6+a-c}+\frac{bc}{6+b-a}+\frac{ac}{6+c-b}\)
\(=\frac{ab}{2a+b}+\frac{bc}{2b+c}+\frac{ca}{2c+a}\le\frac{3\left(a+b+c\right)}{9}=\frac{6}{3}=2\)
Dấu " = " xảy ra <=> a=b=c=2
Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2}\)
Thế chú học có hơn ai không mà sao chú nói vậy đấy ngon làm đi
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(VP=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)
\(=\frac{6}{\sqrt{\left[\left(a+b+c\right)a+bc\right]\left[\left(a+b+c\right)b+ca\right]\left[\left(a+b+c\right)c+ab\right]}}\)
\(=\frac{6}{\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+1\right)^2}}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
\(VT=\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}\)
\(=\frac{1}{\left(a+b+c\right)a+bc}+\frac{1}{\left(a+b+c\right)b+ac}+\frac{1}{\left(a+b+c\right)c+ab}\)
\(=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
Vậy VT = VP, đẳng thức được chứng minh
sr tui ko có câu hỏi tương tự tui chỉ có câu hỏi y hệt thôi Xem câu hỏi