K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

Tớ ko bt

10 tháng 3 2018

Ta có : 

Thay \(a+b+c=2016\) vào A ta có : 

\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)

\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\)\(A>1\)\(\left(1\right)\)

Lại có : 

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\)\(A< 2\)\(\left(2\right)\)

Từ (1) và (2) suy ra : \(1< A< 2\)

Vậy A không phải là số nguyên 

Chúc bạn học tốt ~

10 tháng 3 2018

Ta có:

\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)

\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)

tự làm tiếp nhé!
 

31 tháng 12 2016

Công dãy lại => hệ số : \(k=2014\)

Cách đơn giảii không hiệu quả, Thế lại=> a,b,c thay vào ra A

7 tháng 1 2018

b, Có: a/b < c/d => ad < bc

 Xét a.(b+d)-b.(a+c) = ab+ad-ba-bc = ad-bc < 0

=> a.(b+d) < b.(a+c)

=> a/b < a+c/b+d

c, Đề phải là cho a+b+c = 2016 chứ bạn

Có : A = a/a+b+c-c + b/a+b+c-a + c/a+b+c-b = a/a+b + b/b+c + c/c+a

Vì a,b,c thuộc Z+ nên a/a+b > 0 ; b/b+c > 0 ; c/c+a > 0

=> A > a/a+b+c + b/a+b+c + c/a+b+c = 1

Lại có : a < a+b ; b < b+c ; c < c+a => 0 < a/a+b < a ; 0 < b/b+c < 1 ; 0 < c/c+a < 1

=> A < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = 2

=> 1 < A < 2

=> A ko phải là số tự nhiên

Tk mk nha

7 tháng 1 2018

a,ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU.

TA CÓ:\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{e}\)=>\(\frac{2a^2}{2b^2}\)=\(\frac{3b^2}{3c^2}\)=\(\frac{4c^2}{4d^2}\)=\(\frac{5d^2}{5e^2}\)=\(\frac{2a^2+3b^2+4c^2+5d^2}{2b^2+3c^2+4d^2+5e^2}\)(đfcm)

25 tháng 2 2020

Trả lời:

( 2016a + 3b+1 )(2016a+ 2016a +b ) = 225       (1)

Mà 225 là số lẻ.

\(\Rightarrow\)( 2016a + 3b+1 ); (2016a+ 2016a +b ) là số lẻ

+ Vì ( 2016a + 1 ) là số lẻ

( 2016a + 3b+1 ) là số lẻ

\(\Rightarrow\)3b là số chẵn

Mà 3 là số lẻ

\(\Rightarrow\)b là số chẵn

\(\Rightarrow\)( 2016a +b ) là số chẵn

Mà (2016a+ 2016a +b ) là số lẻ

\(\Rightarrow\)2016a là số lẻ.

Mà \(a\inℕ\)

\(\Rightarrow\)\(a=0\)(thỏa mãn)

Thay \(a=0\)vào (1), ta có:

(0+3b+1)(1+0+b) = 225

(3b+1)(b+1) = 225

Vì \(b\inℕ\)

\(\Rightarrow\)\(b+1\inℕ\)

\(3b+1\inℕ\)

Mà 3b+1 > b+1

\(\Rightarrow\)(3b+1)(b+1) = 225 = 225 . 1 = 25 . 9

+ Với 3b + 1 = 225

\(\Rightarrow\)\(b=\frac{224}{3}\)(Loại)

+ Với 3b + 1 = 25

\(\Rightarrow\)b = 8 (thỏa mãn)

Vậy \(\hept{\begin{cases}a=0\\b=8\end{cases}}\)

Hok tốt!

Vuong Dong Yet