\(_1\)(x)=3.x^2 f
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 2 2020

Đặt \(x^2=t\ge0\Rightarrow x=\pm\sqrt{t}\)

Phương trình trở thành: \(t^2-3mt+m^2+1=0\)

Theo định lý Viet: \(\left\{{}\begin{matrix}t_1+t_2=3m\\t_1t_2=m^2+1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1=\sqrt{t_1}\\x_2=-\sqrt{t_1}\\x_3=\sqrt{t_2}\\x_4=-\sqrt{t_2}\end{matrix}\right.\) \(\Rightarrow x_1+x_2+x_3+x_4=0\)

Lại có \(x_1x_2=\sqrt{t_1}.\left(-\sqrt{t_1}\right)=-t_1\) ; tương tự \(x_3x_4=-t_2\)

\(\Rightarrow x_1x_2x_3x_4=t_1t_2=m^2+1\)

\(\Rightarrow M=m^2+1\)

\(f\left(x\right)=\left(x-1\right)^2\)

\(f\left(0\right)=\left(0-1\right)^2=1\)

\(f\left(-3\right)=\left(-3-1\right)^2=16\)

\(f\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}-1\right)^2=\dfrac{1}{4}\)

\(f\left(\dfrac{2}{3}\right)=\left(\dfrac{2}{3}-1\right)^2=\dfrac{1}{9}\)

\(f\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}-1\right)^2=\dfrac{49}{16}\)

NV
23 tháng 9 2019

a/ ĐKXĐ: \(x\ge2\)

Miền xác định của hàm ko đối xứng nên hàm ko chẵn ko lẻ

b/ ĐKXĐ: \(-2\le x\le2\)

\(f\left(-x\right)=\sqrt{2-x}+\sqrt{2+x}=f\left(x\right)\) nên hàm chẵn

c/ ĐKXĐ: \(\left[{}\begin{matrix}-2\le x< 0\\0< x\le2\end{matrix}\right.\)

\(f\left(-x\right)=\frac{\sqrt{2-x}+\sqrt{2+x}}{-x}=-f\left(x\right)\Rightarrow\) hàm lẻ

d/ \(f\left(-x\right)=x^2-3x+1\Rightarrow\) hàm ko chẵn ko lẻ

e/ \(f\left(-x\right)=\left|-x+1\right|+\left|-x-1\right|=\left|x-1\right|+\left|x+1\right|=f\left(x\right)\Rightarrow\) hàm chẵn

f/ \(f\left(-x\right)=\left|-2x+1\right|-\left|-2x-1\right|=\left|2x-1\right|-\left|2x+1\right|=-f\left(x\right)\)

\(\Rightarrow\) Hàm lẻ

24 tháng 2 2020

giúp mình với mình đang cần gấp

NV
14 tháng 3 2020

1.

\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)

\(f\left(x\right)=0\Rightarrow x=7\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)

\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)

\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)

NV
14 tháng 3 2020

3.

\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)

\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow-6< x< 2\)