K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2022

\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-5.\left(\dfrac{1}{2}\right)^3+3\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5-5\left(\dfrac{1}{2}\right)^3+6\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5\)

\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5.1}{8}+\dfrac{3.1}{4}+6-\dfrac{5.1}{8}+\dfrac{6.1}{4}+6\)

\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5}{8}+\dfrac{3}{4}+6-\dfrac{5}{8}+\dfrac{3}{2}+6\)

\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=13\)

18 tháng 5 2022

\(Q\left(x\right)-P\left(x\right)=6\)

\(-5x^3+6x^2+2x+5+5x^3-3x^2-2x-5=6\)

\(3x^2=6\)

\(x^2=2\)

\(=>x=\pm\sqrt{2}\)

Ta có: \(P\left(x\right)=-5x^4+3x^3-2x^2+\dfrac{1}{2}x-1\)

           \(Q\left(x\right)=6x^4+3x^3-4x^2+\dfrac{1}{2}x-4\)

\(\Rightarrow A\left(x\right)=P\left(x\right)-Q\left(x\right)=-11x^4+2x^2+3\)

9 tháng 6 2021

có thể giải chi tiết hơn đc ko ạ

 

`1)` Yêu cầu là gì ạ?

`2)`

`P(x)-Q(x)=`\((6x^3-3x^2+5x-1)-(-6x^3+3x^2-2x+7)\)

`= 6x^3-3x^2+5x-1+6x^3-3x^2+2x-7`

`= (6x^3+6x^3)+(-3x^2-3x^2)+(5x+2x)+(-1-7)`

`= 12x^3-6x^2+7x-8`

`3)`

`(-3x^3+15x^2+81x):(-3x)`

`= (-3x^3) \div (-3x) + 15x^2 \div (-3x) + 81x \div (-3x)`

`= x^2-5x-27`

2 tháng 5 2023

1)....

mình làm rồi nên để vậy để đánh dấu thôi 

`P(x)=`\( 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x\)

`= (2x^4-x^4)+3x^3+(3x^2-2x^2)+(-4x+6x)+2`

`= x^4+3x^3+x^2+2x+2`

 

`Q(x)=`\(x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3\)

`= x^4+x^3+(3x^2-x^2)+(5x-3x)+(-1+2)`

`= x^4+x^3+2x^2+2x+1`

 

`P(x)+Q(x)=(x^4+3x^3+x^2+2x+2)+(x^4+x^3+2x^2+2x+1)`

`=x^4+3x^3+x^2+2x+2+x^4+x^3+2x^2+2x+1`

`=(x^4+x^4)+(3x^3+x^3)+(x^2+2x^2)+(2x+2x)+(2+1)`

`= 2x^4+4x^3+3x^2+4x+3`

`@`\(\text{dn inactive.}\)

P(x)=x^4+3x^3+x^2+2x+2

Q(x)=x^4+x^3+2x^2+2x+1

P(x)+Q(x)=2x^4+4x^3+3x^2+4x+3

a: P(x)=x^4-2x^4-5x^3-7x^2+2x-1

=-x^4-5x^3-7x^2+2x-1

Q(x)=3x^4-2x^4+5x^3+6x^2-2x+5

=x^4+5x^3+6x^2-2x+5

 

a: \(P\left(x\right)=3x^2-x-1\)

\(Q\left(x\right)=-3x^2-4x-2\)

b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)

c: Để G(x)-6x-1=0 thì 6x2-3x=0

=>3x(2x-1)=0

=>x=0 hoặc x=1/2

17 tháng 6 2019

Bài 1 ( a )

\(A_x=-4x^5-x^3+4x^2+5x+9+4x^5-6x^2-2\)

\(=-x^3-2x^2+5x-7\)

\(B_x=-3x^4-2x^3+10x^2-8x+5x^3-7-2x^3+8x\)

\(=-3x^4+x^3+10x^2-7\)

17 tháng 6 2019

Bài 1 ( b )

\(P_x=\left(-x^3-2x^2+5x-7\right)+\left(3x^4+x^3+10x-7\right)\)

\(=-x^3-2x^2+5x-7+3x^4+x^3+10x-7\)

\(=3x^4-2x^2+15x-14\)

\(Q_x=\left(-x^3-2x^2+5x-7\right)-\left(3x^4+x^3+10x-7\right)\)

\(=-x^3-2x^2+5x-7-3x^4-x^3-10x+7\)

\(=-3x^4-2x^3-5x\)