K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(b,Đặt:a=bk;c=dk\)

\(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{b.k}{b\left(3k+1\right)}=\frac{k}{3k+1};\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{d.k}{d\left(3k+1\right)}=\frac{k}{3k+1}\)

\(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

\(c,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}.Đặt:a=ck;b=dk\)

\(\frac{ac}{bd}=\frac{ckc}{dkd}=\frac{c^2}{d^2}\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{c^2k^2+c^2}{d^2k^2+d^2}=\frac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{c^2}{d^2}.Vậy:\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

\(d,Đặt:a=bk;c=dk\)

\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}và:\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{b^2k^2-2kb^2+b^2}{d^2k^2-2kd^2+d^2}=\frac{b^2\left(k^2-2k+1\right)}{d^2\left(k^2-2k+1\right)}=\frac{b^2}{d^2}\)

\(Vậy:\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

16 tháng 12 2018

Mình giải câu a) thôi nhé, những câu còn lại bạn làm tương tự như mình thôi

a) Đặt a/b=c/d=k

suy ra: a=kb và c=kd

a/b=kb/b=k (1)

a+c/b+d=kb+kd/b+d=k(b+d)/b+d=k (2)

Từ (1) và (2) suy ra: a/b=a+c/b+d

(những câu còn lại bạn đặt k rồi làm như mình nhé)

23 tháng 1 2019

????????????????????

23 tháng 1 2019

đúng = 3 k

14 tháng 3 2020

Theo Cauchy-Schwarz dạng Engel: \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{1}{2}\)

14 tháng 3 2020

DO a,b,c đối xứng , giả sử \(a\ge b\ge c\Rightarrow\hept{\begin{cases}a^2\ge b^2\ge c^2\\\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\end{cases}}\)

áp dụng bất đẳng thức trê-bư-sép ta có

\(a^2.\frac{a}{b+c}+b^2.\frac{b}{a+c}+c^2.\frac{c}{a+b}\ge\frac{a^2+b^2+c^2}{3}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{1}{3}.\frac{3}{2}=\frac{1}{2}\)

vậy \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{2}\)dấu bằng xảy ra khi\(a=b=c=\frac{1}{\sqrt{3}}\)

28 tháng 8 2019

câu 1:

theo bài ra: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

áp dụng tích chất tỉ lệ thức tá có: 

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\)

\(\Leftrightarrow\frac{a^3+b^3}{c^3+d^3}=\frac{\left(a+b\right)^3}{\left(c+d\right)^3}\left(đ.p.c.m\right)\)

28 tháng 8 2019

a/b = c/d    =) a/c=b/d   

Tc dãy tỉ số:

+,  a+b/c+d=a/c=b/d  =)  mũ 3 cả 3 vế nhá

+,   a/c=b/d   => mũ 3 cả 2 vế r công lại

Cc ra 2 kết luận đều = a/c=b/d mũ 3  

Câu a nha