Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(Q=x+1\)
Không thể tìm được GTLN hay GTNN của Q.
b)
\(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)
Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)
Vậy x=1, x=9 là các giá trị cần tìm
a,\(P=\frac{7}{\sqrt{x}+3}\Rightarrow\sqrt{x}+3\inƯ\left(7\right)=\left\{1;7\right\}\)
\(\sqrt{x}+3\) | 1 | 7 |
x | loại | 16 |
b, Ta có : \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3>0\Rightarrow\hept{\begin{cases}\frac{7}{\sqrt{x}+3}\le\frac{7}{3}\\\frac{7}{\sqrt{x}+3}>0\end{cases}}\)
\(\Rightarrow0< P\le\frac{7}{3}\)mà \(P\in Z\)=> \(P\in\left\{1;2\right\}\)
Với \(P=\frac{7}{\sqrt{x}+3}=1\Rightarrow7=\sqrt{x}+3\Leftrightarrow x=16\)( tm )
Với \(P=\frac{7}{\sqrt{x}+3}=2\Rightarrow7=2\sqrt{x}+6\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)( ktm )
\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)
Để biểu thức đã cho nhận giá trị nguyên buộc \(\dfrac{4}{\sqrt{x}-3}\) nguyên
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x\in\left\{1;4;16;25;49\right\}\)
Vậy ......
Ta có
\(1D=\frac{\sqrt{x}-2}{\sqrt{x}-3}=1+\frac{1}{\sqrt{x}-3}\)
Để cho D nguyên thì \(\sqrt{x}-3\)phải là ước của 1
\(\Rightarrow\sqrt{x}-3=\left(-1;1\right)\)
=> x = (4; 16)
=> D = (0; 2)
1/ Để N nhận giá trị nguyên thì trước hết \(\sqrt{x}-2\)phải là ước của 3
\(\sqrt{x}-2=\left(-3;-1;1;3\right)\)
Thế vào ta tìm được x = (1; 9; 25)
=> N = (- 3; 3;1)