K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

S = 1 + 7 + 72 +...+ 72017

= (1 + 7) + (72 + 73) +...+ (72016 + 72017)

= (1 + 7) + 72(1 + 7) +...+ 72016(1 + 7)

= 8 + 72.8 +...+ 72016.8

= 8(1 + 72 +...+ 72016)

Vì 8(1 + 72 +...+ 72016\(⋮\) 8 nên S \(⋮\) 8

Vậy S là bội của 8

20 tháng 10 2016

bn đọc thêm sách nâng cao và phát triển lớp 6 ý

6 tháng 12 2019

Ta có:

M = 70 + 71 + 72 + 73 + ... + 72018 + 72019

M = (1 + 7) + 72(1 + 7) + ... + 72018(1 + 7)

M = 8 + 72.8 + ... + 72018.8

M = 8(1 + 72 + ... + 72018\(⋮\)8

=> M \(\in\)B(8) (đpcm)

6 tháng 12 2019

\(M=7^0+7^1+7^2+7^3+...+7^{2018}+7^{2019}\)

\(M=1+7+7^2\left(1+7\right)+...+7^{2018}\left(1+7\right)\)

\(M=8+7^2.8+...+7^{2018}.8⋮8\)

=> M là bội của 8

17 tháng 12 2019

Có sai đề ko e @@

18 tháng 9 2017

A=1+2+22+23+...+239

A=(1+2+22+23)+(24+25+26+27)+...+(236+237+238+239)

A=(1+2+22+23)+24.(1+2+22+23)+...+236.(1+2+22+23)

A=15+24.15+...236.15

A=15.(1+24+...+236\(⋮\)15

=>A=1+2+22+23+...+239\(⋮\)15.

12 tháng 8 2018

a)  \(\overline{aaaaaa}=a.111111=a.3.37037\) \(⋮\)\(37037\)

b)  Nhận thấy các hạng tử trong B  đều chia hết cho 3   =>  B chia hết cho 3

\(B=3+3^3+3^5+3^7+...+3^{2017}+3^{2019}+3^{2021}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+....+\left(3^{2017}+3^{2019}+3^{2021}\right)\)

\(=3\left(1+3^2+3^4\right)+3^7\left(1+3^2+3^4\right)+...+3^{2017}\left(1+3^2+3^4\right)\)

\(=\left(1+3^2+3^4\right)\left(3+3^7+...+3^{2017}\right)\)

\(=91\left(3+3^7+....+3^{2017}\right)\)\(⋮\)\(91\)

mà  (3;91) = 1

=>  B chia hết cho 273

12 tháng 8 2018

B chia hết cho 273

Còn câu a thì mình không biết nhé, xin lỗi bạn.

29 tháng 12 2017

1. 5x+27 là bội của x+1 

=> 5x+27 chia hết cho x+1 

=> 5(x+1)+22 chia hết cho x+1 

Mà 5(x+1) chia hết cho x+1

=> 22 chia hết cho x+1 

=> x+1 thuộc Ư(22) 

Tiếp theo bạn tự làm nhé

30 tháng 11 2019

\(\text{a) }S=4+4^2+4^3+...+4^{40}\)
     \(S=\left(4+4^2+4^3+4^4\right)+\left(4^5+4^6+4^7+4^8\right)+...+\left(4^{37}+4^{38}+4^{39}+4^{40}\right)\)
     \(S=4\left(1+4+4^2+4^3\right)+4^5\left(1+4+4^2+4^3\right)+...+4^{37}\left(1+4+4^2+4^3\right)\)
     \(S=\left(1+4+4^2+4^3\right)\left(4+4^5+...+4^{37}\right)\)
    \(S=85.\left(4+4^5+...+4^{37}\right)\)
   \(S=17.5.\left(4+4^5+...+4^{37}\right)\)
   \(\text{Vậy S là bội của 17}\)

\(\text{b) Làm tương tự như câu a) - nhóm 4 hạng tử}\)

\(\text{c) }N=81^7-27^9-9^{13}\)   
     \(N=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)    
     \(N=3^{4.7}-3^{3.9}-3^{2.13}\)
     \(N=3^{28}-3^{27}-3^{26}\)
     \(N=3^{24}.\left(3^4-3^3-3^2\right)\)
     \(N=3^{24}.45\)
     \(\text{Vậy N là bội của 45}\)

\(\text{d) }P=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
     \(P=3^n.3^3+3^n.3+2^n.8+2^n.4\)
     \(P=3^n.\left(3^3+3\right)+2^n.\left(8+4\right)\)
    \(P=3^n.30+2^n.12\)
   \(P=6.\left(3^n.5+2^n.2\right)\)  
   \(\text{Vậy P là bội của 6}\)