K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

2,a A+4=4+(5x^2+6x+1)/x^2=(9x^2+6x+1)/x^2=(3x+1)^2/x^2 >/ 0 với mọi x

=>A >/ -4 =>minA=-4 , đẳng thức xảy ra khi x=-1/3 

2,b dễ c/m bđt : x^3+y^3 >/ (x+y)^3/4,khai triển hết ra còn 3(x-y)^2 >/ 0 ,đẳng thức xảy ra khi x=y

x^6+y^6=(x^2)^3+(y^2)^3 >/ (x^2+y^2)^3/4=1/4 ,đẳng thức xảy ra khi x=y=1/căn(2)

29 tháng 4 2017

2,c (a^3-3ab^2)^2=a^6-6a^4b^2+9a^2b^4=5^2=25

    (b^3-3a^2b)^2=b^6-6a^2b^4+9a^4b^2=10^2=100

Cộng theo vế đc a^6+b^6+3a^2b^4+3a^4b^2=(a^2+b^2)^3=25+100=125 =>S=a^2+b^2=5

20 tháng 6 2018

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(=x^2+2x-5x-10+3x^2-12-3x+\dfrac{1}{2}x^2+5x^2\)

\(=\dfrac{19}{2}x^2-6x-22\)

Vậy biểu thức trên phụ thuộc vào biến x.

b) \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\)

Giải:

VT = \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3+y^2+y-y^2-y-1\)

\(=y^3-1\)

Vậy \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\).

20 tháng 6 2018

Giải:

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3\left(x^2-4\right)-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3x^2-12x-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=-10-18x+\dfrac{19}{2}x^2\)

Vậy biểu thức trên phụ thuộc vào biễn x

b) \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3-y^2+y^2-y+y-1\)

\(=y^3-\left(y^2-y^2\right)-\left(y-y\right)-1\)

\(=y^3-1\)

Vậy ...

6 tháng 6 2015

1) x2-4x+5+y2+2y=0

<=>x2-4x+4+y2+2y+1=0

<=>(x-2)2+(x+1)2=0

<=>x-2=0 và x+1=0

<=>x=2    và x=-1

2)2p.p2-(p3-1)+(p+3)2p2-3p5 

<=>2p3-p3+1+2p3+6p2-3p5

<=>3p3+6p2-3p5+1

3)(0.2a3)2-0.01a4(4a2-100)=0,04a6-0,04a6+1

                                     =1

4)a) x(2x+1)-x2(x+20)+(x3-x+3)=2x2+x-x3-20x2+x3-x+3

                                           =-18x2+3(đề sai)

 b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)=3x3-x2+5x-2x3-3x+16-x3+x2-2x

                                                    =16

Vậy x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2) không phụ thuộc vào x

5)a) x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-xy+xz-yz=0

b) x(y+z-yz)-y(z+x-xz)+z(y-x)=xy+xz-xyz-yz-xy+xyz+yz-xz=0

6)M+(12x4-15x2y+2xy2+7)=0

<=>M                              =-(12x4-15x2y+2xy2+7)

<=>M                              =-12x4+15x2y-2xy2-7

17 tháng 2 2017

Câu 4:

D=55

18 tháng 6 2017

bài 1 :

a) 6(x+1)2 - (x-3)(x2 + 3x +9) + (x-2)2

= 6( x2 + 2x + 1 ) - (x3 + 3x2 + 9x - 3x2 - 9x - 27 ) + x2 - 4x + 4

= 6x2 + 12x + 6x - x3 - 3x2 - 9x + 3x2 + 9x + 27 + x2 - 4x + 4

= -x3 + 7x2 + 14x + 31 (1)

Thay x = 2 vào biểu thức (1) ta được :

\(\left(-2\right)^3+7.2^2+14.2+31\) = 79

Vậy với x = 2 giá trị của biểu thức (1) là 79

b) \(\left(2x-1\right)\left(3x+1\right)+\left(3x-4\right)\left(3-2x\right)\)

= 6x2 + 2x - 3x - 1 + 9x - 6x2 - 12 + x

= 9x - 13 (2)

Thay x= \(\dfrac{9}{8}\) Vào biểu thức (2) ta được :

9.\(\dfrac{9}{8}\) - 13 = \(-\dfrac{23}{8}\)

Vậy với x = 9/8 giá trị của biểu thức (2) là -\(\dfrac{23}{8}\)

18 tháng 6 2017

Những hằng đẳng thức đáng nhớ (Tiếp 2)

Những hằng đẳng thức đáng nhớ (Tiếp 2)

Những hằng đẳng thức đáng nhớ (Tiếp 2)

15 tháng 5 2018

Bài 1 :

\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Vậy \(MIN_A=-36\) . Dấu \("="\) xảy ra khi \(x^2+5x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Bài 2 :

a ) \(x+y=5\Rightarrow\left(x+y\right)^2=25\)

\(\Leftrightarrow x^2+2xy+y^2=25\)

\(\Leftrightarrow x^2+y^2=25-2.6=13\)

15 tháng 5 2018

\(B=x^2-4x+1\)

\(B=x^2-4x+4-3\)

\(B=\left(x-2\right)^2-3\ge-3\)

"="<=>x=2

\(C=\dfrac{-4}{x^2-4x+10}\)

Ta có:\(x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

\(\Rightarrow\dfrac{-4}{x^2-4x+10}\ge-\dfrac{4}{6}=-\dfrac{2}{3}\)

"="<=>x=2

D\(\ge-\dfrac{8}{3}\)<=>x=0,5(tương tự)

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2 Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là: A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2 ...
Đọc tiếp

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.

Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:

A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2

C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2

Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là:

A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2

Câu 3: Giá trị của biểu thức x + 2x + 1 tại x = -1 là:

A) 4 B) -4 C) 0 D) 2

Câu 4: Kết quả khai triển của hằng đẳng thức (x + y)3 là:

A) x2 + 2xy + y2 B) x3 + 3x2y + 3xy2 + y3

C) (x + y).(x2 – xy + y2) D) x3 - 3x2y + 3xy2 - y3

Câu 5: Kết quả của phép chia (20x4y – 25x2y2 – 5x2y) : 5x2y là:

A) 4x2 – 5y + xy B) 4x2 – 5y – 1

C) 4x6y2 – 5x4y3 – x4y2 D) 4x2 + 5y - xy

Câu 6: Đẳng thức nào sau đây là Sai:

A) (x - y)3 = x3 - 3x2y + 3xy2 - y3 B) x3 – y3 = (x - y)(x2 - xy + y2) C) (x - y)2 = x2 - 2xy + y2 D) (x - 1)(x + 1) = x2 - 1

II. Tự luận (7 điểm)

Câu 1 ( 1 điểm): Rút gọn biểu thức P = (x - y)2 + (x + y)2 – 2.(x + y)(x – y) – 4x2

Câu 2 (3 điểm): Phân tích các đa thức sau thành nhân tử:

a/ x3 – x2y + 3x – 3y

b/ x3 – 2x2 – 4xy2 + x

c/ (x + 2)(x+3)(x+4)(x+5) – 8

Câu 3 (2 điểm): Làm tính chia:(x4 – x3 – 3x2 + x + 2) : (x2 – 1)

Câu 4 (1 điểm): Cho x, y là 2 số khác nhau thoả mãn x2 – y = y2 – x. Tính giá trị của biểu thức A = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y).

help mekhocroi

2
23 tháng 10 2016

Đại số lớp 8

Vậy (x^4 - x^3 - 3x^2 + x + 2) = (x^2 - x - 1)(x^2 - 1) + 1

23 tháng 10 2016

Đại số lớp 8

Đại số lớp 8

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)

\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)

\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)

\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt \(x^2+7x+10=t\), ta có:

\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)

\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)

1. Rút gọn rồi tính giá trị của biểu thức A= (x-y) (x2 + xy+y2) + 2y3 tại x=2/3 và y=1/3 2. Chứng minh biểu thức sau không phụ thuộc vào biến x, y A= (3x-5) (2x+11) - (2x+3) (3x+7) B= (2x+3) (4x2-6x+9) - 2(4x3-1) C= (x-1)3 - (x+1)3+ 6(x+1)(x-1). 3. Tìm min của A, B, C và max của D, E A= x2 - 4x + 1 B= 4x2 + 4x + 11 C= (x-1) (x+3) (x+2) (x+6) D= 5 - 8x - x2 E= 4x - x2 +1 4. a. Cho a+b+c = 0. Chứng minh...
Đọc tiếp

1. Rút gọn rồi tính giá trị của biểu thức A= (x-y) (x2 + xy+y2) + 2y3 tại x=2/3 và y=1/3

2. Chứng minh biểu thức sau không phụ thuộc vào biến x, y

A= (3x-5) (2x+11) - (2x+3) (3x+7)

B= (2x+3) (4x2-6x+9) - 2(4x3-1)

C= (x-1)3 - (x+1)3+ 6(x+1)(x-1).

3. Tìm min của A, B, C và max của D, E

A= x2 - 4x + 1 B= 4x2 + 4x + 11 C= (x-1) (x+3) (x+2) (x+6)

D= 5 - 8x - x2 E= 4x - x2 +1

4. a. Cho a+b+c = 0. Chứng minh a3+b3+c3= 3abc

b. Tìm giá trị của a, b biết: a2 +2a + 6b + b2= -10

5. Tìm n∈Z để 2n2-n+2 ⋮ 2n+1

6. Tìm giá trị của biểu thức A= \(\dfrac{x+y}{z}+\dfrac{x+z}{y}\)nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

7. Tìm các giá trị nguyên của x để phân thức M có giá trị là một số nguyên:

M=\(\dfrac{10x^2-7x-5}{2x-3}\)

8. Tìm giá trị nhỏ nhất của biểu thức: \(B=\dfrac{x^2-2x+2005}{x^2}\)

Mấy bạn giúp mình thi học kì với ạ! Cảm ơn trước nha!

3

Bài 1:

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(A=x^3-y^3+2y^3\)

\(A=x^3+y^3\)

Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:

\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

20 tháng 4 2020

Viết tổng sau dưới dạng tích và tính giá trị biểu thức với x = -8x=−8.