Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :A = \(\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
A = \(\left(\frac{\left(x-1\right)^2}{x^2+x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)
= \(\frac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)
= \(\frac{x^3-3x^2+3x-1+3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)
= \(\frac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}=1.\frac{x^2+1}{x+1}=\frac{x^2+1}{x+1}\)
b) Để A > - 1 <=> \(\frac{x^2+1}{x+1}>-1\)
<=> \(\frac{x^2+1}{x+1}+1>0\)
<=> \(\frac{x^2+x+2}{x+1}>0\)
Vì x2 + x + 2 >0 \(\forall x\)
=> A > 0 <=> x + 1 > 0 <=> x > -1
a) Đk: x > 0 và x khác +-1
Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)
A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)
A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)
A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)
b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)
Vậy MaxA = 1/4 <=> x = 2
a)ĐKXĐ là \(x\ne\pm1,x\ne0\)
P=\(\frac{x^2+1}{x}\)
b)x>0
c)x=1,x=-1 (ko thỏa mãn)\(\Leftrightarrow\)PT vô nghiệm
a) P = \(\left(\frac{x}{x-1}+\frac{1}{x^2-x}\right):\left(\frac{1}{x+1}+\frac{2}{x^2+1}\right)\)
=> P = \(\left(\frac{x^2}{\left(x-1\right)x}+\frac{1}{x\left(x-1\right)}\right):\left(\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{2}{\left(x+1\right)\left(x-1\right)}\right)\)
=> P = \(\left(\frac{x^2+1}{x\left(x-1\right)}\right):\left(\frac{x-1+2}{\left(x+1\right)\left(x-1\right)}\right)\)
=> P = \(\frac{x^2+1}{x\left(x-1\right)}:\frac{x+1}{\left(x+1\right)\left(x-1\right)}\)
=> P = \(\frac{x^2+1}{x\left(x-1\right)}\cdot\left(x-1\right)\)
=> P = \(\frac{x^2+1}{x}\)
b) ĐKXĐ: x \(\ne\)0; x \(\ne\)\(\pm\)1
Để P > -1
=> \(\frac{x^2+1}{x}>-1\)
=> \(\frac{x^2+1}{x}+1>0\)
=> \(\frac{x^2+1+x}{x}>0\)
Do x2 + x + 1 > 0 \(\forall\)x (vì x2 + x + 1 = x2 + x + 1/4 + 3/4 = (x + 1/2)2 + 3/4 > 0 : giải thích)
=> x > 0
Vậy để P > -1 <=> x > 0 và x \(\ne\)1
a)
\(P=\left(\frac{x}{x-1}+\frac{1}{x^2-x}\right):\left(\frac{1}{x+1}+\frac{1}{x^2+1}\right)\)
\(P=\left(\frac{x}{x-1}+\frac{1}{x\left(x-1\right)}\right):\left(\frac{1}{x+1}+\frac{2}{\left(x-1\right)\left(x+1\right)}\right)\)
\(P=\left(\frac{x^2}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}\right):\left(\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{2}{\left(x-1\right)\left(x+1\right)}\right)\)
\(P=\frac{x^2+1}{x\left(x-1\right)}:\frac{x-1}{\left(x+1\right)\left(x-1\right)}\)
\(P=\frac{x^2+1}{x\left(x-1\right)}:\frac{1}{x+1}\)
?????????????????? Đề
tự làm nốt k hiểu đề cho sai à