K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2023

Đặt \(x^2+y^2=a\)

Khi đó ta được: \(P=\left(a+2\right)^3-\left(a-2\right)^3-12a^2\)

\(\Leftrightarrow P=a^3.6a^2+12a+8-a^3+6a^2-12a+8-12a^2\)

\(\Leftrightarrow P=\left(a^3-a^3\right)+\left(6a^2+6a^2-12a^2\right)+\left(12a-12a\right)+8+8\)

\(\Leftrightarrow P=16\)

Vậy \(P=16\) tại \(x=2019\) và \(y=2020\)

NV
9 tháng 5 2021

\(P=\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}+2020=\dfrac{x^5+y^5}{\left(xy\right)^2}+2020=\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)-\left(xy\right)^2\left(x+y\right)}{\left(-2\right)^2}\)

\(=\dfrac{\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\left[\left(x+y\right)^2-2xy\right]-\left(-2\right)^2.5}{4}\)

\(=\dfrac{\left(-8+6.5\right)\left(25+4\right)-20}{4}=...\)

NV
7 tháng 1 2021

\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)

\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)

\(\Rightarrow x-y=1\Rightarrow P=1\)

\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)

\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)

\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)

NV
25 tháng 12 2020

\(x+y=2\Rightarrow y=2-x\)

\(P=2x^2-\left(2-x\right)^2-5x+\dfrac{1}{x}+2020=x^2-x+\dfrac{1}{x}+2016\)

\(P=x^2+1-x+\dfrac{1}{x}+2015\ge2x-x+\dfrac{1}{x}+2015\)

\(P\ge x+\dfrac{1}{x}+2015\ge2\sqrt{\dfrac{x}{x}}+2015=2017\)

Dấu "=" xảy ra khi \(x=y=1\)

ĐKXĐ: \(\left\{{}\begin{matrix}2020-y^2\ge0\\2020-z^2\ge0\\2020-x^2\ge0\end{matrix}\right.\)

Ta có:

\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}=3030\)

\(\Leftrightarrow2x\sqrt{2020-y^2}+2y\sqrt{2020-z^2}+2z\sqrt{2020-x^2}=6060\)

\(\Leftrightarrow2020-y^2-2x\sqrt{2020-y^2}+x^2+2020-z^2-2y\sqrt{2020-z^2}+y^2+2020-x^2-2z\sqrt{2020-x^2}+z^2=0\)

   \(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2+\left(\sqrt{2020-z^2}-y\right)^2+\left(\sqrt{2020-x^2}-z\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2=\left(\sqrt{2020-z^2}-y\right)^2=\left(\sqrt{2020-x^2}-z\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2020-y^2}=x\\\sqrt{2020-z^2}=y\\\sqrt{2020-x^2}=z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2020-y^2=x^2\\2020-z^2=y^2\\2020-x^2=z^2\end{matrix}\right.\)(vì \(x,y,z>0\))

\(\Leftrightarrow\left\{{}\begin{matrix}2020=x^2+y^2\\2020=y^2+z^2\\2020=z^2+x^2\end{matrix}\right.\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)=3.2020\)

\(\Rightarrow x^2+y^2+z^2=3.1010=3030\)

\(\Rightarrow A=x^2+y^2+z^2=3030\)

Vậy \(A=3030\)

 

 

30 tháng 10 2021

hay wa 😍

24 tháng 11 2017

Ta có: x2 + x2y2 - 2y = 0

\(\Rightarrow\)x2 + x2y2 + y2 - 2y + 1 - y2 - 1 = 0

\(\Rightarrow\)(x- 1) + (x2y2 - y2) + (y - 1)2 = 0 

\(\Rightarrow\)(x2 - 1) + y2(x2 - 1) + (y - 1)2 = 0

\(\Rightarrow\)(x2 - 1)(1 + y2) + (y - 1)2 = 0

\(\Rightarrow\)(x2 - 1)(1 + y2) =   -(y - 1)2     \(\le\)0     V y

\(\Rightarrow\)x2 - 1 \(\le\)0  V x       ( vì 1 + y2 > 0 ,  V y )

\(\Rightarrow\)(x - 1)(x + 1) \(\le\)

\(\Rightarrow\)x - 1 và x + 1 trái dấu

Do đó  \(\hept{\begin{cases}x-1\ge0\\x+1\le0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x\ge1\\x\le-1\end{cases}}\)  ( vô lý )

Hoặc \(\hept{\begin{cases}x-1\le0\\x+1\ge0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x\le1\\x\ge-1\end{cases}}\)  \(\Leftrightarrow\)-1\(\le\)\(\le\)1     (*)

Lại có:  x3 + 2y2 - 4y + 3 = 0

\(\Rightarrow\)(x3 + 1) + 2(y2 - 2y + 1) = 0

\(\Rightarrow\)(x3 + 1) + 2(y - 1)2 = 0

\(\Rightarrow\)x3 + 1 =   -2(y - 1)2  \(\le\)0,    V  y 

\(\Rightarrow\)x3 + 1 \(\le\)0,   V  x

\(\Rightarrow\)(x + 1)(x2 - x + 1) \(\le\)

\(\Rightarrow\)x + 1 \(\le\)0   ( vì x2 - x + 1 = (x - 1/2 )2 + 3/4  > 0, V x   )

\(\Rightarrow\)\(\le\)-1  (**)

Từ (*) và (**) suy ra   x = -1 \(\Rightarrow\)(-1)2 + (-1)2 . y2 - 2y = 0

                                            \(\Rightarrow\)1 + y2 - 2y = 0

                                            \(\Rightarrow\)( y - 1 )2 = 0  \(\Rightarrow\)y = 1

\(\Rightarrow\)x2 + y2 = (-1)2 + 12 = 2

5 tháng 10 2021

\(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

\(\Rightarrow x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)

\(=6+3\sqrt[3]{9-8}.x=6+3x\)

\(\Rightarrow x^3-3x=6\)

\(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)

\(\Rightarrow y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\right)\)

\(=34+3\sqrt[3]{289-288}.y=34+3y\)

\(\Rightarrow y^3-3y=34\)

\(P=x^3+y^3-3\left(x+y\right)+2009=\left(x^3-3x\right)+\left(y^3-3y\right)+2009\)

\(=6+34+2009=2049\)