Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\left(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)
\(=\sqrt{x}\)
b) Để P>4 thì \(\sqrt{x}>4\)
hay x>16
Kết hợp ĐKXĐ, ta được: x>16
Vậy: Khi x>16 thì P>4
a,Ta có \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ge0\\4-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b,P=\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}\)+\(\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)-\(\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P=\(\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P=\(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)=\(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)=\(\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
Câu 1 chưa rõ đề !
Câu 2 :
a ) ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b ) \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
c ) \(P=2\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
2, a,ĐKXĐ:\(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\left\{{}\begin{matrix}\sqrt{x}-2\ne0\\\sqrt{x}+2\ne0\\4-x\ne0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b,\(P=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)\(P=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
c, P=2\(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\)
\(\Leftrightarrow3\sqrt{x}=2\left(\sqrt{x}+2\right)\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\)
Vậy x=16 thì P có giá trị =2
\(P=\dfrac{1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+2}-\dfrac{2\sqrt{x}}{x-4}\)
a) \(ĐKXĐ:x\ge0;x\ne4\)
b) \(P=\dfrac{1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+2}-\dfrac{2\sqrt{x}}{x-4}\)
\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+2}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+2+2\left(\sqrt{x}-2\right)-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+2+2\sqrt{x}-4-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
Vậy: \(P=\dfrac{1}{\sqrt{x}+2}\)
_Chúc bạn học tốt_
Bài 2:
a: ĐKXĐ: 2/3x-1/5>=0
=>2/3x>=1/5
hay x>=3/10
b: ĐKXĐ: \(\dfrac{x+1}{2x-3}>=0\)
=>2x-3>0 hoặc x+1<=0
=>x>3/2 hoặc x<=-1
c: ĐKXĐ: \(\left\{{}\begin{matrix}3x-5>=0\\x-4>0\end{matrix}\right.\Leftrightarrow x>4\)
a) ĐKXĐ: \(x\ge0;x\ne1\)
b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{2}{\sqrt{x}+1}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)
a.
\(P=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\\ =\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{x-4}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}-\dfrac{2+5\sqrt{x}}{x-4}\\ =\dfrac{x+\sqrt{x}-2+x-4\sqrt{x}}{x-4}\\ =\dfrac{2x-2-3\sqrt{x}}{x-4}\)
a: ĐKXĐ: x>=0; x<>4
b: \(P=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{x-4}=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
c: Để P=2 thì \(3\sqrt{x}=2\sqrt{x}+4\)
=>x=16