\(4x-\sqrt{4x^2-12x+9}\)

rút gọn A , rồi tìm x để A=-15

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

\(A=4x-\sqrt{4x^2-12x+9}\)

\(=4x-\sqrt{\left(2x-3\right)^2}\)

\(=4x-\left|2x-3\right|\)

Theo đề ta có: \(A=-15\Leftrightarrow4x-\left|2x-3\right|=-15\)

\(\Rightarrow\left|2x-3\right|=4x+15\)

\(\Rightarrow\orbr{\begin{cases}2x-3=4x+15\\2x-3=-4x-15\end{cases}\Rightarrow\orbr{\begin{cases}2x=-18\\6x=-12\end{cases}\Rightarrow}\orbr{\begin{cases}x=-9\\x=-2\end{cases}}}\)

                                                           Vậy x = {-2;-9}

4 tháng 9 2016

\(A=4x-\sqrt{4x^2-12x+9}\)

\(=4x-2x+3\)

\(=2x+3\)

\(A=15\Rightarrow2x+3=15\)

\(2x=12\)

\(x=6\)

13 tháng 7 2019

giải giúp mình bài này ới ạ mình đng cần gấp 

Cho biểu thức 

c=(căng x-2/căng x+2+căng x+2/căng x-2)nhân căng x+2/2 - 4 căng x/căng x-2

13 tháng 7 2019

a)

 \(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{a-9}\)

\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{a-3\sqrt{a}+3+3\sqrt{a}-3a-9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{-2a-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)

\(P=\frac{-2a-3}{a-9}\)

b) Để \(P=\frac{1}{3}\Rightarrow\frac{-2a-3}{a-9}=\frac{1}{3}\)

\(\Rightarrow3\left(-2a-3\right)=a-9\)

\(\Rightarrow-6a-9=a-9\)

\(\Rightarrow-6a-a=-9+9\)

\(\Rightarrow-7a=0\left(L\right)\)

Vậy ko có gt của a để P=1/3 ( mk ko chắc.....)

\(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)

\(=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x-2\sqrt{x}-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)

\(=\frac{\sqrt{x}-1}{1-4x}:\frac{2x-4\sqrt{x}}{1-4x}=\frac{\sqrt{x}-1}{1-4x}.\frac{1-4x}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)

b, \(A>A^2\Rightarrow\frac{1}{2\sqrt{x}}>\left(\frac{1}{2\sqrt{x}}\right)^2\Rightarrow\frac{1}{2\sqrt{x}}>\frac{1}{4x}\Rightarrow\frac{1}{2\sqrt{x}}-\frac{1}{4x}>0\Rightarrow\frac{2\sqrt{x}-1}{4x}>0\)

\(2\sqrt{x}-1>0\);\(4x>0\)

\(\Rightarrow x>0\)thì \(A>A^2\)

1 tháng 6 2021

a, Với \(-4\le x\le4\)

 \(A=\sqrt{x^2+8x+16}+\sqrt{x^2-8x+16}\)

\(=\sqrt{\left(x+4\right)^2}+\sqrt{\left(x-4\right)^2}=\left|x+4\right|+\left|x-4\right|\)

b, \(B=\sqrt{9x^2-6x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(3x\right)^2-2.3x+1}+\sqrt{\left(2x\right)^2-2.2x.3x+3^2}\)

\(=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(2x-3\right)^2}=\left|3x-1\right|+\left|2x-3\right|\)

15 tháng 7 2019

\(A=3x+\sqrt{9x^2-24x+16}=3x+\sqrt{\left(3x\right)^2-2.3.4x+4^2}=3x+\sqrt{\left(3x-4\right)^2}=3x+\left|3x-4\right|=-9+13=4\)

\(B=5x-\sqrt{\left(2x\right)^2+2.2.3x+3^2}=5x-\sqrt{\left(2x+3\right)^2}=5x-\left|2x+3\right|=-5\sqrt{5}+2\sqrt{5}-3=-3\left(\sqrt{5}+1\right)\)

21 tháng 7 2018

Giúp e với ạ T.T

8 tháng 8 2017

A= 2x+3- \(\sqrt{4x^2-12x+9}\)(x\(\ge\)1 ,5)

A=2x +3-\(\sqrt{\left(2x\right)^2-2.2x.3+9}\)

A=2x+3 -\(\sqrt{\left(2x-3\right)^2}\)

A = 2x+3-|2x-3| (1)

nếu 2x-3\(\ge\)0 <=> x\(\ge\)1,5 => |2x-3|=2x-3

(1) thành :A= 2x+3-(2x-3)

A=2x+3-2x+3

A=6 (tm)

nếu 2x-3 <0 <=> x< 1,5 => |2x-3|=3-2x

(1) thành : A= 2x+3-(3-2x)

A=2x+3-3+2x

A=4x (ktm)

Vậy A=6 với x \(\ge\)1,5

b, với x= -0,5 (ktm đk)

nếu đúng thì like cho mik nhahehe

9 tháng 8 2017

sai câu b thôi bạn :v cảm ơn nhiều nha hôm qua mình sửa bài rồi :v

11 tháng 8 2018

\(a,\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=|2x-1|+|2x-3|\)

\(b,\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}\)

\(=\sqrt{\left(7x-3\right)^2}+\sqrt{\left(7x+3\right)^2}\)

\(=|7x-3|+|7x+3|\)

=.= hok tốt!!

17 tháng 10 2016

TXĐ \(\sqrt{x}\)lớn hơn hoặc bằng 0=>x lớn hơn hoặc bằng 0

A=\(\sqrt{x}\)-\(\sqrt{x^2-4x+4}\)=\(\sqrt{x}\)-\(\sqrt{\left(x-2\right)^2}\)=\(\sqrt{x}\)-x+2

A=-(x-\(\sqrt{x}\)-2)=-(\(\sqrt{x}\)-2)(\(\sqrt[]{x}\)+1)

\(Đk:x\ge0\)

b) \(\sqrt{x}-\sqrt{x^2-4x+4}\)

\(=\sqrt{x}-\sqrt{\left(x-2\right)^2}\)

\(=\sqrt{x}-\left|x-2\right|\left(1\right)\)

Th1 : \(x-2\ge0\)

PT ( 1 ) \(=\sqrt{x}-x+2\)

Th2 : \(x-2< 0\)

PT ( 1 ) \(=\sqrt{x}-2+x\)