\(\left(\frac{a-1}{2a-3}-\frac{3a}{4a+6}+\frac{7a-2a^2-1}{18-8a^2}\right):\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

ĐKXĐ: \(a\ne\frac{3}{2},a\ne-\frac{3}{2}\)

a, \(P=\left(\frac{a-1}{2a-3}-\frac{3a}{4a+6}+\frac{7a-2a^2-1}{18-8a^2}\right):\frac{1}{6-4a}\)

\(=\left(\frac{a-1}{2a-3}-\frac{3a}{2\left(2x+3\right)}+\frac{7a-2a^2-1}{2\left(9-4a^2\right)}\right):\frac{-1}{4a-6}\)

\(=\left(\frac{a-1}{2a-3}-\frac{3a}{2\left(2x+3\right)}-\frac{7a-2a^2-1}{2\left(4a^2-9\right)}\right):\frac{-1}{2\left(2a-3\right)}\)

\(=\left(\frac{a-1}{2a-3}-\frac{3a}{2\left(2x+3\right)}-\frac{7a-2a^2-1}{2\left(2a-3\right)\left(2a+3\right)}\right)\left[-2\left(2a-3\right)\right]\)

\(=\left[\frac{2\left(a-1\right)\left(2a+3\right)-3a\left(2a-3\right)-\left(7a-2a^2-1\right)}{2\left(2a-3\right)\left(2a+3\right)}\right]\left[-2\left(2a-3\right)\right]\)

\(=\frac{4a-5}{2\left(2a-3\right)\left(2a+3\right)}\left[-2\left(2a-3\right)\right]\)

\(=-\frac{\left(4a-5\right)}{2a+3}=\frac{5-4a}{2a+3}\)

24 tháng 3 2020

a) \(a\ne0;a\ne1\)

\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)

\(=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]\cdot\frac{4a^2}{a\left(a^2+4\right)}\)

\(=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(=\frac{a^3-1}{a^3-1}\cdot\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

Vậy \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

b) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

M>0 khi 4a>0 => a>0

Kết hợp với ĐKXĐ

Vậy M>0 khi a>0 và a\(\ne\)1

c) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

\(M=\frac{4a}{a^2+4}=\frac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\frac{\left(a-2\right)^2}{a^2+4}\)

Vì \(\frac{\left(a-2\right)^2}{a^2+4}\ge0\forall a\)nên \(1-\frac{\left(a-2\right)^2}{a^2+4}\le1\forall a\)

Dấu "=" <=> \(\frac{\left(a-2\right)^2}{a^2+4}=0\)\(\Leftrightarrow a=2\)

Vậy \(Max_M=1\)khi a=2

28 tháng 3 2023

mik thắc mắc tại sao 3a lại mất vậy

 

27 tháng 9 2020

a) \(ĐK:a\ne1;a\ne0\)

\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

b) Ta có: \(a^2+4\ge4a\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)

Khi đó \(\frac{4a}{a^2+4}\le1\)

Vậy MaxA = 1 khi x = 2

27 tháng 9 2020

•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)

Mong Idol pro giải thích hộ em chỗ này :((

4 tháng 4 2020

a) \(ĐKXĐ:\hept{\begin{cases}a\ne\pm2\\a\ne1\\a\ne0\end{cases}}\)

\(A=\left(\frac{4a}{2+a}+\frac{8a^2}{4-a^2}\right):\left(\frac{a-3}{a^2-2a}-\frac{2}{a}\right)\)

\(\Leftrightarrow A=\frac{8a-4a^2+8a^2}{\left(2-a\right)\left(2+a\right)}:\frac{a-3-2a+4}{a\left(a-2\right)}\)

\(\Leftrightarrow A=\frac{4a^2+8a}{\left(2-a\right)\left(2+a\right)}:\frac{-a+1}{a\left(a-2\right)}\)

\(\Leftrightarrow A=\frac{4a}{2-a}:\frac{-a+1}{a\left(a-2\right)}\)

\(\Leftrightarrow A=\frac{4a^2\left(a-2\right)}{\left(a-2\right)\left(a-1\right)}\)

\(\Leftrightarrow A=\frac{4a^2}{a-1}\)

b) Để A nhận giá trị nguyên

\(\Leftrightarrow\frac{4a^2}{a-1}\inℤ\)

\(\Leftrightarrow4a^2⋮a-1\)

\(\Leftrightarrow4\left(a^2-1\right)+4⋮a-1\)

\(\Leftrightarrow4\left(a-1\right)\left(a+1\right)+4⋮a-1\)

\(\Leftrightarrow4⋮a-1\)

\(\Leftrightarrow a-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow a\in\left\{0;2;-1;3;-3;5\right\}\)

Ta sẽ loại các giá trị ở đkxđ

Vậy để \(A\inℤ\Leftrightarrow a\in\left\{2;-1;3;-3;5\right\}\)

22 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}a\ne1\\a\ne0\end{cases}}\)

\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right)\div\frac{a^3+4a}{4a^2}\)

\(\Leftrightarrow M=\left(\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right):\frac{a^2+4}{4a}\)

\(\Leftrightarrow M=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a^2}{a^2+4}\)

\(\Leftrightarrow M=\frac{4a^2}{a^2+4}\)

b) Ta có : \(\frac{4a^2}{a^2+4}=\frac{4\left(a^2+4\right)-16}{a^2+4}\)

\(=4-\frac{16}{a^2+4}\)

Để M đạt giá trị lớn nhất 

\(\Leftrightarrow\frac{16}{a^2+4}\)min

\(\Leftrightarrow a^2+4\)max

\(\Leftrightarrow a\)max

Vậy để M đạt giá trị lớn nhất thì a phải đạ giá trị lớn nhất.