Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\frac{3x+3}{x-9}-\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{3-\sqrt{x}}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right).ĐKXĐ:x\ge0,x\ne9\)
\(=\left(\frac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{3x+3-2x+6\sqrt{x}-x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(=\frac{3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3}{\sqrt{x}+3}\)
\(b,x=20-6\sqrt{11}=11-2.3\sqrt{11}+9\)
\(=\left(\sqrt{11}-3\right)^2\)
\(P=\frac{3}{\sqrt{x}+3}=\frac{3}{\sqrt{\left(\sqrt{11}-3\right)^2}+3}=\frac{3}{\sqrt{11}-3+3}=\frac{3\sqrt{11}}{11}\)
\(c,P>\frac{1}{2}\Rightarrow\frac{3}{\sqrt{x}+3}>\frac{1}{2}\)
\(\Leftrightarrow\frac{3}{\sqrt{x}+3}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)
\(\Leftrightarrow\frac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)\(\Leftrightarrow\frac{3-\sqrt{x}}{2\left(\sqrt{x}+3\right)}>0\)
vì \(2\left(\sqrt{x}+3\right)>0\) (nếu x=0 =>pt vô nghiệm)
\(\Rightarrow3-\sqrt{x}>0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\)
Kết hợp ĐKXĐ: \(0< x< 9\)
ĐKXĐ: ...
\(A=\left(\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\frac{25-x+\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}+5}-\frac{\sqrt{x}+5}{\sqrt{x}+5}\right):\left(\frac{25-x+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}\right)\)
\(=\frac{-5}{\left(\sqrt{x}+5\right)}.\frac{\left(\sqrt{x}+5\right)}{-\left(\sqrt{x}+3\right)}=\frac{5}{\sqrt{x}+3}\)
b/ \(B=\frac{x+16}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)
\(\Rightarrow B\ge2\sqrt{\frac{\left(\sqrt{x}+3\right).25}{\sqrt{x}+3}}-6=4\)
\(B_{min}=4\) khi \(\left(\sqrt{x}+3\right)^2=25\Rightarrow x=4\)
a) x = 16 (tm) => A = \(\frac{\sqrt{16}-2}{\sqrt{16}+1}=\frac{4-2}{4+1}=\frac{2}{5}\)
b) B = \(\left(\frac{1}{\sqrt{x}+5}-\frac{x+2\sqrt{x}-5}{25-x}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)
B = \(\frac{\sqrt{x}-5+x+2\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)
B = \(\frac{x+3\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{x+5\sqrt{x}-2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
c) P = \(\frac{B}{A}=\frac{\sqrt{x}-2}{\sqrt{x}+2}:\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
=> \(P\left(\sqrt{x}+2\right)\ge x+6\sqrt{x}-13\)
<=> \(\frac{\sqrt{x}+1}{\sqrt{x}+2}.\left(\sqrt{x}+2\right)-x-6\sqrt{x}+13\ge0\)
<=> \(-x-6\sqrt{x}+13+\sqrt{x}+1\ge0\)
<=> \(-x-5\sqrt{x}+14\ge0\)
<=> \(x+5\sqrt{x}-14\le0\)
<=> \(x+7\sqrt{x}-2\sqrt{x}-14\le0\)
<=> \(\left(\sqrt{x}+7\right)\left(\sqrt{x}-2\right)\le0\)
Do \(\sqrt{x}+7>0\) với mọi x => \(\sqrt{x}-2\le0\)
<=> \(\sqrt{x}\le2\) <=> \(x\le4\)
Kết hợp với Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)25
và x thuộc Z => x = {0; 1; 2; 3}
d) M = \(3P\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\) <=>M = \(3\cdot\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\)
M = \(\frac{3\sqrt{x}+3}{x+\sqrt{x}+4}=\frac{x+\sqrt{x}+4-x+2\sqrt{x}-1}{\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{15}{4}}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}}\le1\)(Do \(\left(\sqrt{x}-1\right)^2\ge0\) và \(\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}>0\))
Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\) <=> \(x=1\)
Vậy MaxM = 1 khi x = 1
Ta có: \(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)
do đó \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}.\frac{\sqrt{x}-6}{\sqrt{x}-1}=\frac{\sqrt{x}-6}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)
Vì \(x\ge0\Rightarrow0< \frac{7}{\sqrt{x}+1}\le7\)
Để P nguyên thì \(\frac{7}{\sqrt{x}+1}\in Z\)
do đó \(\frac{7}{\sqrt{x}+1}\in\left\{1,2,3,4,5,6,7\right\}\)
Đến đây xét từng TH là ra
rút gọn B ta có B=\(\frac{\sqrt{x}+6}{\sqrt{x}-1}\)\(\Rightarrow\)\(AB=\frac{\sqrt{x}+6}{\sqrt{x}+1}\in Z\)
=\(1+\frac{5}{\sqrt{x}+1}\)
Vì 1\(\in Z\) nên để P thuộc Z thì \(\frac{5}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\left(\sqrt{x}+1\right)\inƯ\left(5\right)=\pm1;\pm5\)
Đến đây thì ez rồi
a) Rút gọn : Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right).\frac{\sqrt{x}-3}{2}\left(x\ge0,x\ne9\right)\)
Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}+\frac{14}{x-9}\right).\frac{\sqrt{x}-3}{2}\)
Q =\(\left(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{2\left(x+16\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)
Q = \(\frac{x+16}{\sqrt{x}+3}\)
thay \(x=7-4\sqrt{3}\) vào Q ta được
Q =\(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\) =\(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2+3}}\)
=\(\frac{23-4\sqrt{3}}{2-\sqrt{3}+3}\)
=\(\frac{23-4\sqrt{3}}{5-\sqrt{3}}\)