\(\sqrt{20+\sqrt{20+\sqrt{20+....+\sqrt{20}}}}\)(2014 dấu căn) .A=?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

Số này lớn hơn 4 và nhỏ hơn 5 thôi, (rất gần 5)

Tính thế nào được A.

27 tháng 10 2014

hihi y = 5 chứ k phải bằng 3 đâu nhé

lụi đê ( lụi nhg đúng :D )

\(\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{20+....+\sqrt{20}}}}}=A\)

\(20+\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}=A^2\)

20 + A = A2

GIẢI RA TÌM A 

 

 

15 tháng 10 2015

\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}<\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{25}}}}=5\)

\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}>\sqrt{20}>\sqrt{16}=4\)

\(\Rightarrow4<\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}<5\)

Vì có nhiều dấu căn nên lấy giá trị của biểu thức đã cho là 5.

30 tháng 8 2019

nhầm đề ak,cái này tính D nghe hợp lý hơn

30 tháng 8 2019

D=\(\sqrt{20+\sqrt{20+....+\sqrt{20+\sqrt{25}}}}\)= \(\sqrt{20+\sqrt{20+....+\sqrt{20+5}}}\)=\(\sqrt{20+\sqrt{20+....+\sqrt{25}}}\)

=............=\(\sqrt{20+\sqrt{25}}\)=\(\sqrt{20+5}=5\)

Vậy D=5

3 tháng 8 2017

b. ĐK \(\hept{\begin{cases}x-2\ge0\\y+2014\ge0\\z-2015\ge o\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\y\ge-2014\\z\ge2015\end{cases}}}\)

Ta có \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)

Đặt  \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{y+2014}=b\ge0\\\sqrt{z-2015}=c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=a^2\\y+2014=b^2\\z-2015=c^2\end{cases}\Rightarrow x+y+z}=a^2+b^2+c^2+3\)

Pt \(\Leftrightarrow a+b+c=\frac{1}{2}\left(a^2+b^2+c^2+3\right)\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)\(\Leftrightarrow a=b=c=1\)

\(\Rightarrow\hept{\begin{cases}x-2=1\\y+2014=1\\z-2015=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2013\\z=2016\end{cases}\left(tm\right)}}\)

Vậy \(x=3;y=-2013;z=2016\)

28 tháng 6 2018

kuroba kaito \(\sqrt{25-4\sqrt{6}}=\sqrt{24-1}\) à?

28 tháng 6 2018

ko \(\sqrt{24}-1\) Nhã Doanh ,Nguyễn Thị Bình Yên

25 tháng 7 2019

a. \(\sqrt{\frac{3}{7}}=\sqrt{\frac{3\cdot7}{7^2}}=\frac{\sqrt{21}}{7}\)

b.\(\sqrt{\frac{7}{20}}=\sqrt{\frac{7\cdot5}{4\cdot5\cdot5}}=\frac{\sqrt{35}}{2\cdot5}=\frac{\sqrt{35}}{10}\)

c.\(\sqrt{\frac{11}{12}}=\sqrt{\frac{11\cdot3}{4\cdot3\cdot3}}=\frac{\sqrt{33}}{2\cdot3}=\frac{\sqrt{33}}{6}\)

d.\(\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{3}}=\sqrt{\frac{3\left(\sqrt{3}-\sqrt{2}\right)^2}{3\cdot3}}=\frac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{3}=\frac{3-2\sqrt{3}}{3}\)