\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\).Tính giá trị của biểu...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 3 2019

\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)+z^3\)

\(=\left(\frac{1}{x}+\frac{1}{y}\right)^3+\frac{1}{z^3}-\frac{3}{xy}\left(\frac{-1}{z}\right)\) (do \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\))

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[\left(\frac{1}{x}+\frac{1}{y}\right)^2-\left(\frac{1}{x}+\frac{1}{y}\right).\frac{1}{z}+\frac{1}{z^2}\right]+\frac{3}{xyz}\)

\(=\frac{3}{xyz}\)

\(\Rightarrow P=\frac{2017}{3}.xyz.\frac{3}{xyz}=2017\)

15 tháng 3 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{1}{x}=-\left(\frac{1}{y}+\frac{1}{z}\right).P=\frac{2017}{3}xyz\left[-\left(\frac{1}{y}+\frac{1}{z}\right)^3+\frac{1}{y^3}+\frac{1}{z^3}\right]=-\frac{2017}{3}xyz\left(\frac{3}{yz^2}+\frac{3}{zy^2}\right)=-2017xyz\left(\frac{z+y}{z^2y^2}\right)=-2017\left(\frac{xyz^2+xy^2z}{y^2z^2}\right)=-2017\left(\frac{x}{y}+\frac{x}{z}\right)=-2017x\left(\frac{1}{y}+\frac{1}{z}\right)=-2017.\left(-\frac{1}{x}\right)x=2017\)

5 tháng 5 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(=>\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^3=0\)

\(=>\left(\frac{1}{x}+\frac{1}{y}\right)^3+\frac{1}{z^3}+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right).\left(\frac{1}{x}+\frac{1}{y}\right)\frac{1}{z}=0\)

\(=>\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}+3\left(\frac{1}{x}+\frac{1}{y}\right)\frac{1}{xy}+3.0.\frac{1}{z}=0\)(do\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\))

\(=>\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}+3.\left(\frac{1}{x}+\frac{1}{y}\right)\frac{1}{xy}=0\)\(\left(1\right)\)

Mà \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0=>\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)\(\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}-3\frac{1}{xyz}=0\)

\(=>\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3\frac{1}{xyz}\)

Thay vào P ta có:

\(P=\frac{2013xyz}{3}.3.\frac{1}{xyz}=2017\)

14 tháng 3 2020

Ta có : 

\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

Do x + y + z = 0 => x+y = -z ; y+z = -x ; z+x = -y

\(\Rightarrow A=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{\left(-1\right).xyz}{xyz}=-1\)

12 tháng 10 2016

Ta có: x+y+z=0

Suy ra: x+y=-z; y+z=-x; z+x=-y

ta có: \(\left(\frac{x}{y}+1\right)\left(\frac{y}{z}+1\right)\left(\frac{z}{x}+1\right)\)\(=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

                                                                  \(=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}\)

                                                                   \(=-1\)

11 tháng 1 2021

X3 + Y3 + Z3 = 3XYZ

<=> X3 + Y3 + Z3 - 3XYZ = 0

<=> ( X3 + Y3 ) + Z3 - 3XYZ = 0

<=> ( X + Y )3 - 3XY( X + Y ) + Z3 - 3XYZ = 0

<=> [ ( X + Y )3 + Z3 ] - 3XY( X + Y + Z ) = 0

<=> ( X + Y + Z )[ ( X + Y )2 - ( X + Y ).Z + Z2 - 3XY ] = 0

<=> ( X + Y + Z )( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0

<=> \(\orbr{\begin{cases}X+Y+Z=0\\X^2+Y^2+Z^2-XY-YZ-XZ=0\end{cases}}\)

+) X + Y + Z = 0 => \(\hept{\begin{cases}X+Y=-Z\\Y+Z=-X\\X+Z=-Y\end{cases}}\)

KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(\frac{X+Y}{Y}\right)\left(\frac{Y+Z}{Z}\right)\left(\frac{X+Z}{X}\right)=\frac{-Z}{Y}\cdot\frac{-X}{Z}\cdot\frac{-Y}{X}=-1\)

+) X2 + Y2 + Z2 - XY - YZ - XZ = 0

<=> 2( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0

<=> 2X2 + 2Y2 + 2Z2 - 2XY - 2YZ - 2XZ = 0

<=> ( X2 - 2XY + Y2 ) + ( Y2 - 2YZ + Z2 ) + ( X2 - 2XZ + Z2 ) = 0

<=> ( X - Y )2 + ( Y - Z )2 + ( X - Z )2 = 0 (1)

DỄ DÀNG CHỨNG MINH (1) ≥ 0 ∀ X,Y,Z

DẤU "=" XẢY RA <=> X = Y = Z

KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(1+\frac{Y}{Y}\right)\left(1+\frac{Z}{Z}\right)\left(1+\frac{X}{X}\right)=2\cdot2\cdot2=8\)

11 tháng 1 2021

Khi x + y + z = 0

=> x + y = -z

=> x + z = - y

=> y + z = - x

Khi đó M = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)

18 tháng 10 2019

ADTC dãy tỉ số bằng nhau đc ko hay pk mấy cái cosi hay cot , tan , ....