Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
để M là số nguyên thì 6n-1chia hết cho 3n+2
6n-1 chia hết cho 3n+2
mà 3n+ 2 luôn chia hết cho 3n+2 suy ra 2.(3n+2) cũng chia hết cho 3n+2
suy ra (6n-1)-2. (3n+2) chia hết cho 3n+2
6n-1 - 6n-4 chia hết cho 3n+2
-5 chia hết cho 3n+2
3n+2 thuộc Ước của -5 thuộc (1,5,-1,-5)
3n thuộc (-1,3,-3,-8)
n thuộc (-1/3,1,-1,-8/3)
mà n là số nguyên nên n thuộc (1 và -1)
để M có gt nhỏ nhất thì n = -1
câu a mình nghĩ mình đúng nhưng câu b thì mk chưa chắc. Xin lỗi nhìu nhoa
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
- Nếu n-1=-5 => n=-4
- Nếu n-1 = - 1 => n = 0
- Nếu n - 1 = 1 => n = 2
- Nếu n -1 = 5 => n = 6
Vậy n thuộc -4 ;0 ;2 ; 6
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
- Nếu n-1=-5 => n=-4
- Nếu n-1 = - 1 => n = 0
- Nếu n - 1 = 1 => n = 2
- Nếu n -1 = 5 => n = 6
Vậy n thuộc -4 ;0 ;2 ; 6
a) -Để B là phân số thì: \(n-4\ne0\Rightarrow n\ne4\) (thỏa mãn n là số nguyên).
b) -Để B là số nguyên thì: \(n⋮\left(n-4\right)\)
=>\(\left(n-4+4\right)⋮\left(n-4\right)\)
=>\(4⋮\left(n-4\right)\)
=>\(n-4\inƯ\left(4\right)\)
=>\(n-4\in\left\{1;-1;4;-4\right\}\)
=>\(n\in\left\{5;3;8;0\right\}\) (đều thỏa mãn điều kiện n nguyên và \(n\ne4\)).
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)