Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Ta có: P = 2x2 + y2 - 4x - 4y + 10
P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4
P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)4 \(\forall\)x;y
=> P luôn dương với mọi biến x;y
3 Ta có:
(2n + 1)(n2 - 3n - 1) - 2n3 + 1
= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1
= -5n2 - 5n = -5n(n + 1) \(⋮\)5 \(\forall\)n \(\in\)Z
a)\(A=n^3+3n^2+2n\)
\(A=n\left(n^2+n+2n+2\right)\)
\(A=n\left[n\left(n+1\right)+2\left(n+1\right)\right]\)
\(A=n\left(n+1\right)\left(n+2\right)\)
Vì\(n;n+1;n+2\) là 3 số liên tiếp nên sẽ có một số chia hết cho 2, một số chia hết cho 3.
Mà \(ƯCLN(2;3)=1\) và \(2.3=6\) nên \(n\left(n+1\right)\left(n+2\right)⋮6\)
Hay \(A⋮6\) với mọi số nguyên dương n
b)Muốn \(A⋮15\) thì \(A⋮3;5\)
Ta có: \(n(n+1)(n+2)\)\(⋮3\left(1\right)\)
Mà để \(A⋮5\) thì \(n\) hoặc \(n+1\) hoặc \(n+2\) phải chia hết cho 5
\(\Rightarrow n=5\) hoặc \(n+1=5\) hoặc \(n+2=5\)
\(\Rightarrow n=5\) hoặc \(n=4\) hoặc \(n=3\)
\(\Rightarrow n\in\left\{5;4;3\right\}\)
Lan nghĩ ra một số biết rằng số đó bằng hiệu của số chẵn lớn nhất có 3 chữ số chẵn khác nhau với 60 rồi cộng thêm 21. Hỏi số lan nghĩ là số nào
1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2
2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi a = 1
3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)
4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)
Do đó \(a^{2018}+b^{2019}=1+1=2\)
5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)
a) $A = n(n+1)(n+2)$ là tích $3$ số nguyên liên tiếp nên chia hết cho $3$
b) Để $A$ chia hết cho $15$ thì $A$ phải chia hết cho $5$. Khi đó $1$ trong $3$ thừa số $n$ hoặc $(n+1)$ hoặc $(n+2)$ chia hết cho $5$
Do $n < 10$ nên ta chọn các giá trị của $n$ thỏa mãn là $3;4;5;8;9$