Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
Bài 3:
a: \(=\dfrac{3+2\sqrt{2}}{1}-\dfrac{\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}\)
\(=3+2\sqrt{2}-\sqrt{2}=3+\sqrt{2}\)
b: \(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\left(\sqrt{ab}-b\right)}{\left(a+\sqrt{b}\right)^2}\)
\(=\dfrac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=\dfrac{b}{a+\sqrt{b}}\)
c: \(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)
\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)
\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow\sqrt{x}-2< 0\)
\(\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)
KL............
\(2.\) Tương tự bài 1.
\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)
Bài 1:
a)Với x > 0;x ≠ 4 ta có:
\(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right)\cdot\dfrac{x+2\sqrt{x}}{\sqrt{x}}\)
\(=\left(\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(=\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\left(\sqrt{x}+2\right)-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\cdot\left(\sqrt{x}+2\right)\)
\(=\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4}{x-4}\)
c)\(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)
\(=\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right)\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\dfrac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=b-a\)
Bài 2:
a)Với a > 0;a ≠ 1;a ≠ 2 ta có
\(P=\left(\dfrac{\sqrt{a}^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}\)
\(=\left(\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}\)
\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}\)
\(=\dfrac{2\sqrt{a}}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}=\dfrac{2\left(a-2\right)}{a+2}\)
b)Ta có:
\(P=\dfrac{2\left(a-2\right)}{a+2}=\dfrac{2a-4}{a+2}=\dfrac{2\left(a+2\right)-8}{a+2}=2-\dfrac{8}{a+2}\)
P nguyên khi \(2-\dfrac{8}{a+2}\) nguyên⇒\(\dfrac{8}{a+2}\) nguyên⇒\(a+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(TH1:a+2=1\Rightarrow a=-1\left(loai\right)\)
\(TH2:a+2=-1\Rightarrow a=-3\left(loai\right)\)
\(TH3:a+2=2\Rightarrow a=0\left(loai\right)\)
\(TH4:a+2=-2\Rightarrow a=-4\left(loai\right)\)
\(TH5:a+2=4\Rightarrow a=2\left(loai\right)\)
\(TH6:a+2=-4\Rightarrow a=-6\left(loai\right)\)
\(TH7:a+2=8\Rightarrow a=6\left(tm\right)\)
\(TH8:a+2=-8\Rightarrow a=-10\left(loai\right)\)
Vậy a = 6
Bài 1:
a: \(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b: \(x=2+2\sqrt{5}+2-2\sqrt{5}=4\)
Khi x=4 thì \(P=\dfrac{4+2+1}{2}=\dfrac{7}{2}\)
Câu (A) đề có sao không nhỉ?
\(B=\dfrac{1}{a^2-\sqrt{x}}:\dfrac{\sqrt{a}+1}{a\sqrt{a}+a+\sqrt{a}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}.\left(a\sqrt{a}-1\right)}.\dfrac{a\sqrt{a}+1+\sqrt{a}}{\sqrt{a}+1}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{a}.\left(\sqrt{a}-1\right).\left(a+\sqrt{a}+1\right)}.\dfrac{\sqrt{a}.\left(a+\sqrt{a}+1\right)}{\sqrt{a}+1}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{a}-1}.\dfrac{1}{\sqrt{a}+1}\)
\(\Leftrightarrow\dfrac{1}{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}\)
\(\Leftrightarrow\dfrac{1}{a-1}\)
\(E=\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right).\left(x-\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}+\dfrac{x+1}{\sqrt{x}}\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}+1-\left(x-\sqrt{x}+1\right)+x+1}{\sqrt{x}}\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}+x+1}{\sqrt{x}}\)
Bài 1:
a: \(A=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{9x-1}\right):\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+5\sqrt{x}+1}{9x-1}:\dfrac{3}{3\sqrt{x}+1}\)
\(=\dfrac{3x+3\sqrt{x}}{9x-1}\cdot\dfrac{3\sqrt{x}+1}{3}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)
b: \(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{1}\cdot\dfrac{\sqrt{x}-1}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
\(A=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
\(=\dfrac{x\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{\left(x\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(x\sqrt{x}-3\right)-\left(2x-12\sqrt{x}+18\right)-\left(x+4\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}-3x+8\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(x+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}=\dfrac{x+8}{\sqrt{x}+1}\)
~ ~ ~
\(\dfrac{x+8}{\sqrt{x}+1}=\dfrac{\left(4\sqrt{x}+4\right)+\left(x-4\sqrt{x}+4\right)}{\sqrt{x}+1}\)
\(=4+\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\ge4\)
Dấu "=" xảy ra khi x = 4
@Phương An câu b) bn giải rõ dc ko tại mik hơi ko hiểu