Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: a>b => 2a > 2b (nhân 2 vế với 2)
=> 2a - 3 > 2b - 3 (cộng 2 vế với -3)
b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)
=> a > b (nhân 2 vế với -1/4)
c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)
=> -4a < 5c-1
Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)
b) Ta có : 5c - 1 < - 4b \(\Rightarrow\)5c -1 + 3 < - 4b + 3 \(\Rightarrow\)5c + 2 < 3 - 4b
Mà 5c + 2 > 3 - 4a \(\Rightarrow\)3 - 4a < 5c + 2 < 3 - 4b \(\Rightarrow\)3 - 4a < 3 - 4b \(\Rightarrow\)4a < 4b \(\Rightarrow\)a < b
Vậy nếu 3 - 4a < 5c + 2 và 5c - 1 < - 4b thì a < b .
Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b)
Áp dụng bất đẳng thức Cauchy ta được
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được)
≤ 1/16a+1/16c+1/32b+1/32c
=1/16a+1/32b+3/32c
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết
Do đó dấu "=" không xảy ra
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1)
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2)
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3)
Cộng (1)(2)(3) cho ta
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c)
=3/16*(ab+bc+ca)abc= 3/16
tk nha mk trả lời đầu tiên đó!!!
Ta có: a+b=9
=> (a+b)^2=81
=> (a-b)^2 + 4ab =81
=> (a-b)^2=81-4.20
=> (a-b)^2=80-81
=>(a-b)^2=1
=> a-b=1 hoặc a-b=-1
mà a<b nên a-b <0 => a-b=-1
Vậy (a-b)^2015=(-1)^2015=-1