Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}a+3c=2016\\a+2b=2017\end{cases}}\left(1\right)\)
Cộng từng vế của hệ (1), ta được:
\(2a+2b+3c=4033\)
\(\Leftrightarrow2a+2b+2c=4033-c\)
\(\Leftrightarrow2\left(a+b+c\right)=4033-c\)
Vì c không âm nên \(4033-c\le4033\)
\(\Rightarrow a+b+c\le\frac{4033}{2}=2016\frac{1}{2}\)
Vậy GTLN của P là \(2016\frac{1}{2}\Leftrightarrow c=0\)
Lúc đó: \(a=2016;b=\frac{1}{2}\)
Ta có: a + 3c = 2016 ; a + 2b = 2017
Do đó : 2a + 2b + 3c = 2a + 2b + 2c + c = 2 (a + b + c) + c = 4033
Suy ra: 2 (a + b + c) = 4033 - c
Để 2 (a + b + c) lớn nhất thì 4033 - c lớn nhất
Nên c nhỏ nhất , mà c >= 0 nên c = 0.
Từ đó ta suy ra : 2 (a + b + c) <= 4033 <=> a + b + c <= 2016,5
Vậy Max P = 2016,5
Khi c = 0 ; a = 2016 ; b = 0,5