\(9\sqrt{ab}-6b\sqrt{\dfrac{a}{b}}+\dfrac{1}{b}\sqrt{9ab^3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=9\sqrt{ab}-6\sqrt{ab}+\dfrac{1}{b}\cdot3b\sqrt{ab}\)

\(=3\sqrt{ab}+3\sqrt{ab}=6\sqrt{ab}\)

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?

13 tháng 6 2018

Mạn phép ko chép lại đề , mk làm luôn

a) \(D=\left[\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(1+\sqrt{ab}\right)+\left(\sqrt{a}+\sqrt{b}\right)\left(1-\sqrt{ab}\right)}{1-ab}\right]:\dfrac{a+b+2ab+1-ab}{1-ab}\)\(D=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(1+\sqrt{ab}+1-\sqrt{ab}\right)}{1-ab}.\dfrac{1-ab}{a+b+ab+1}\)

\(D=\dfrac{2\left(\sqrt{a}+\sqrt{b}\right)}{\left(b+1\right)\left(a+1\right)}\)

13 tháng 6 2018

D=A/B

a)

B=1+(a+b+2ab)/(1-ab)=(a+b+ab)/(1-ab)

dk: a,b≥0; a.b≠1

1/B=(1-ab)/(a+b+ab)

A=√a+√b)[(1+√ab)+(1-√ab)]/(1-ab)=2(√a+√b)/(1-ab)

D=2(√a+√b)/[(a+1)(b+1)]

b)

a=2/(√3+2)=2(2-√3)/[(2+√3)(2-√3)]=2(2-√3)=(√3-1)^2

16 tháng 7 2018

a) \(B=\)\(\dfrac{\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}}{\dfrac{\sqrt{x}}{x+\sqrt{x}}}\) ĐKXĐ: x>0

=\(\dfrac{\dfrac{\sqrt{x}+1+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}}{\dfrac{\sqrt{x}}{x+\sqrt{x}}}\)

\(=\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}}:\dfrac{\sqrt{x}}{x+\sqrt{x}}\)

=\(\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}}\times\dfrac{x+\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b)

Theo câu a ) ta có :

B=\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

Xét : \(x+\sqrt{x}+1=x+2.\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

=\(\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) (với mọi x>0) (1)

Xét:

\(\sqrt{x}>0\) (2)

Từ (1) và (2) =>\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}>0\) (ĐPCM)

c) B=\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( theo câu a)

=\(\dfrac{x}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+1\)

=\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\)

Áp dụng BĐT cô si cho \(\sqrt{x}\)\(\dfrac{1}{\sqrt{x}}\)

Ta có : \(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}\)

=2

Vậy :\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\ge2+1\)

Hay\(\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\ge3\)

Min B= 3 Dấu "=" xảy ra khi x=1

CHÚC BẠN HỌC TỐThiuhiu

16 tháng 7 2018

thanks nha

26 tháng 12 2017

\(A=\sum\sqrt{\dfrac{ab}{c+ab}}=\sum\sqrt{\dfrac{ab}{c^2+ca+cb+ab}}\)

\(=\sum\sqrt{\dfrac{ab}{\left(c+a\right)\left(c+b\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{c+a}+\dfrac{b}{c+b}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{b+a}+\dfrac{c}{b+c}\right)\)

\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)

28 tháng 6 2017

đề sai rồi bạn sửa lại đi rồi mình giúp

28 tháng 6 2017

sai ở đâu v bn

 

15 tháng 6 2018

a, \(\sqrt{b}\) tồn tại \(\Leftrightarrow b>0\)

\(\left\{{}\begin{matrix}\sqrt{b}+1\ne0\\\sqrt{b}-1\ne0\\b-1\ne0\end{matrix}\right.\Leftrightarrow b\ne1\)

Vậy B có nghĩa khi \(\left\{{}\begin{matrix}b>0\\b\ne1\end{matrix}\right.\)

b,

\(B=\dfrac{\sqrt{b}}{\sqrt{b}+1}-\dfrac{\sqrt{b}}{\sqrt{b}-1}-\dfrac{2}{b-1}\)

\(=\dfrac{\sqrt{b}}{\sqrt{b}+1}-\dfrac{\sqrt{b}}{\sqrt{b}-1}-\dfrac{2}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}\)

\(=\dfrac{\sqrt{b}\left(\sqrt{b}-1\right)-\sqrt{b}\left(\sqrt{b}+1\right)-2}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}=\dfrac{b-\sqrt{b}-b-\sqrt{b}-2}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}=\dfrac{-2\left(\sqrt{b}+1\right)}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}=\dfrac{-2}{\sqrt{b}-1}=\dfrac{2}{1-\sqrt{b}}\)

c,

\(B>1\Leftrightarrow2>1-\sqrt{b}\)

\(\Leftrightarrow2-\left(1-\sqrt{b}\right)=1+\sqrt{b}>0\) (luôn đúng với mọi b)

=> Với mọi b có ĐKXĐ là b khác 0 và b > 1 thì B > 1

15 tháng 6 2018

cảm ơn