Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có BĐT:
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:
\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)
Khi \(a=b=c\)
3.Áp dụng BĐT \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)ta có
\(\frac{ab}{a+3b+2c}=ab.\frac{1}{\left(a+c\right)+2b+\left(b+c\right)}\le\frac{1}{9}ab.\left(\frac{1}{a+c}+\frac{1}{2b}+\frac{1}{b+c}\right)\)
TT \(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{b+a}+\frac{1}{2c}+\frac{1}{c+a}\right)\)
\(\frac{ca}{c+3a+2b}\le\frac{ac}{9}.\left(\frac{1}{a+b}+\frac{1}{2a}+\frac{1}{b+c}\right)\)
=> \(VT\le\frac{1}{18}\left(a+b+c\right)+\Sigma.\frac{1}{9}.\left(\frac{bc}{a+c}+\frac{ba}{a+c}\right)=\frac{1}{18}\left(a+b+c\right)+\frac{1}{9}\left(a+b+c\right)=\frac{1}{6}\left(a+b+c\right)\)
Dấu bằng xảy ra khi a=b=c
cảm ơn bạn nhiều, bạn có thể giúp mình hai câu kia nữa được không
b) Ta có:
\(\frac{a}{\sqrt{b^2+3}}+\frac{a}{\sqrt{b^2+3}}+\frac{b^2+3}{8}+\frac{a^2}{2}\)\(\ge\)\(4\sqrt[4]{\frac{a^4}{16}}=2a\)
\(\frac{b}{\sqrt{c^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c^2+3}{8}+\frac{b^2}{2}\ge4\sqrt[4]{\frac{b^4}{16}}=2b\)
\(\frac{c}{\sqrt{a^2+3}}+\frac{c}{\sqrt{a^2+3}}+\frac{a^2+3}{8}+\frac{c^2}{2}\ge4\sqrt[4]{\frac{c^4}{16}}=2c\)
Cộng lại ta đươc:
\(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)+\)\(\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)\(\ge2\left(a+b+c\right)\)
⇒ \(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)(1)
Lại có: \(a^2+1\ge2a\); \(b^2+1\ge2b\); \(c^2+1\ge2c\)
Suy ra \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3=3\)
Khi đó (1)⇔ \(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5.3+9}{8}=3\)
⇒ \(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)
Dấu "=" xảy ra ⇔ \(a=b=c=1\)
\(\left(a^2+3b^2\right)\left(1+3\right)\ge\left(a+3b\right)^2\Rightarrow\sqrt{a^2+3b^2}\ge\frac{a+3b}{2}\)
\(\Rightarrow P=\sum\frac{ab}{\sqrt{a^2+3b^2}}\le2\sum\frac{ab}{a+3b}=2\sum\frac{ab}{a+b+b+b}\)
\(\Rightarrow P\le\frac{1}{8}\sum ab\left(\frac{1}{a}+\frac{3}{b}\right)=\frac{1}{8}\sum\left(3a+b\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)
"=" \(\Leftrightarrow a=b=c=1\)
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
\(\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{6}{2}=3\)(BĐT \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Ta có đẳng thức quen thuộc: \(\frac{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=1\)
\(\Rightarrow\frac{\left(x+y\right)}{z}+\frac{\left(y+z\right)}{x}+\frac{\left(z+x\right)}{y}+2=\frac{\left(x+y\right)}{z}.\frac{\left(y+z\right)}{x}.\frac{\left(z+x\right)}{y}\)
Đặt \(\frac{x+y}{z}=a;\frac{y+z}{x}=b;\frac{z+x}{y}=c\) thì ta thu được giả thiết.
Vậy tồn tại các số x, y, z > 0 sao cho \(a=\frac{x+y}{z};b=\frac{y+z}{x};c=\frac{z+x}{y}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\le\frac{3}{2}\)
Áp dụng BĐT AM-GM: \(VT\le\frac{1}{2}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)=\frac{3}{2}\)
P/s: Em không chắc về cách trình bày ở chỗ phần đặt..., nhưng cách đặt trên luôn tồn tại đó!
Cách khác tự nhiên hơn!
\(a+b+c+2=abc\)
\(\Leftrightarrow\Sigma_{cyc}\left(a+1\right)\left(b+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)
Đặt \(\left(\frac{1}{a+1};\frac{1}{b+1};\frac{1}{c+1}\right)=\left(z;x;y\right)\text{ thì }x+y+z=1\Rightarrow a=\frac{1-z}{z}=\frac{x+y}{z}\)
Tương tự: \(b=\frac{y+z}{x};c=\frac{z+x}{y}\). Rồi giải như bài ban nãy.
bn xem lại cái đề nhé, với a = b = c = 2 thì ko đúng đâu