K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Đặt A = BT cần chứng minh 

a² + b² + c² = 1 => b² + a² = ( 1 - c² ) 

=> c/(a²+b²) = c²/c(1-c²) 

Ta có 2c²(1-c²)(1-c²) ≤ ( 2c² + 1 - c² + 1 - c² )^3/27 = 8/27 

=> c(1 - c² ) ≤ 2/√27 

=> c²/c(1-c²) ≥ √27 . c²/2 

T² => A ≥ √27/2 ( c² + b² + a² ) = √27/2 = 3.√3/2 

=> ĐPCM 

Dấu = xảy ra <=> 
{ 2c² = 1- c² ; 2a² = 1 - a² , 2b² = 1- b² 
{ a² + b² + c² = 1 

<=> a = b = c = 1/√3

31 tháng 10 2017

chỗ nào có 1 thay ab+bc+ac=1 vô, còn lại chịu khó tự sướng nha bạn mik ko muốn viết nhiều đâu

10 tháng 11 2015

Bài 1: 

Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\) 

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)

\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)

\(............................\)

\(A=\left[\left(2^{256}\right)^2-1\right]+1=2^{512}\)

17 tháng 8 2016

\(\left(x+1\right)\left(x^2-x-x^2+x-1\right)=-\left(x+1\right)\)

\(\left(2a^2+1\right)^2-4a^2-\left(2a^2+1\right)^2=-4a^2\)

\(\left(a^2+b^2+c^2+a^2-b^2-c^2\right)\left(a^2+b^2+c^2-a^2+b^2+c^2\right)=2a^2\left(2b^2+2c^2\right)=4a^2b^2+4a^2c^2\)

\(\left(a-5\right)^2\left(a+5\right)^2=\left(a^2-25\right)^2\)

\(\left(3a^3+1\right)^2-9a^2-\left(3a^3+1\right)^2=-9a^2\)

29 tháng 9 2018

\(1)\)

\(a)\)\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(A=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(A=100+99+98+97+...+2+1\)

\(A=\frac{100\left(100+1\right)}{2}\)

\(A=5050\)

\(b)\)\(B=3\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)

\(B=\left(2^4-1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)

\(B=\left(2^8+1\right).....\left(2^{64}+1\right)+1\)

\(............\)

\(B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)

\(B=2^{128}-1+1\)

\(B=2^{128}\)

Chúc bạn học tốt ~ 

29 tháng 9 2018

\(1)\)

\(c)\)\(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(C=\left(a+b\right)^2+2\left(a+b\right)c+c^2+\left(a+b\right)^2-2\left(a+b\right)c+c^2-2\left(a+b\right)^2\)

\(C=2\left(a+b\right)^2+2c^2-2\left(a+b\right)^2\)

\(C=2c^2\)

\(2)\)

\(a)\)\(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(VP=a^3+3a^2b+3ab^2+b^3-3ab\left(a+b\right)\)

\(VP=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)\)

\(VP=a^3+b^3=VT\) ( đpcm ) 

\(b)\)\(VT=a^3+b^3+c^3-3abc\)

\(VT=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(VT=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(VT=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(VT=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\) ( đpcm ) 

Từ đó suy ra : 

\(i)\)\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)\(\Rightarrow\)\(a+b+c=0\)

Hoặc \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

Chúc bạn học tốt ~ 

26 tháng 7 2016

a) x (x+1) (x-1) - (x-1) (x2+x+1)= x3 - x2 + x2 - x - x3 + 13

                                           = 1- x

5 tháng 7 2018

Bài 1:

a)  \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=100+99+98+97+...+2+1=5050\)

b)  \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(=2^{128}-1+1=2^{128}\)

c)  \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(=2c^2\)

16 tháng 7 2018

ket ban bang bang 2 ko ban

DD
16 tháng 1 2022

a) \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=100+99+98+97+...+2+1\)

\(=\frac{100.\left(100+1\right)}{2}=5050\)

b) \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=...=\left(2^{64}-1\right)\left(2^{64}+1\right)+1^2=2^{128}-1^2+1^2=2^{128}\)

c) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(=\left(a+b\right)^2+2c\left(a+b\right)+c^2+\left(a+b\right)^2-2c\left(a+b\right)+c^2-2\left(a+b\right)^2\)

\(=2c^2\)

16 tháng 1 2022

a/Có A=100^2+99^2+98^2+...+1^2 -2(99^2+97^2+..+1)

           = Sigma(100)(x=1)(x^2) -2((1^2+2^2+3^2+..+99^2)-(2^2+4^2+...+98^2)

           =Sigma(100)(x=1)(x^2)-2.Sigma(99)(x=1)(x^2)+4sigma(49)(x=1)(x^2)

           =5050

b/bạn lấy 3=2^2-1 rồi dùng hiệu 2 bình nhé

c/tách ra được thôi