K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)( 1 )

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a-b}{c-d}=\frac{a+b}{c+d}\left(đpcm\right)\)

với \(\hept{\begin{cases}a\ne b\\c\ne d\end{cases}}\)

15 tháng 3 2016

Ta có tính chất dãy tỉ 

a/b = b/c = c/d = a+b+c/b+c+d

=> (a+b+c/b+c+d)3=(a+b+c/b+c+d)+(a+b+c/b+c+d)+(a+b+c/b+c+d)

=>  (a+b+c/b+c+d)3=a/b.b/c.c/d

=>  (a+b+c/b+c+d)3= a/d (đpcm)

15 tháng 3 2016

Ta có tính chất dãy tỉ 

a/b = b/c = c/d = a+b+c/b+c+d

=> (a+b+c/b+c+d)3=(a+b+c/b+c+d)+(a+b+c/b+c+d)+(a+b+c/b+c+d)

=>  (a+b+c/b+c+d)3=a/b.b/c.c/d

=>  (a+b+c/b+c+d)3= a/d (đpcm)

15 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3\)

\(\Rightarrow\dfrac{a+b+c}{b+c+d}\times\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}=\dfrac{a}{d}\)

=> điều phải chứng minh

15 tháng 10 2018

cảm ơn bạn nha

21 tháng 7 2015

ghi lai de

Áp dụng t/c dãy tỉ :

a/b = b/c = c/d = (a + b + c)/(b + c + d).

Suy ra :  (a/b)^3 = (a+b+c/b+c+d)^3  

Vậy (a+b+c/B+c+d)^3 = (a/b)^3 = (a/b).(a/b).a/b) = (a/b).(b/c).(c/d) = a/d (vi dc  rút gọn ) 

26 tháng 9 2016

hay đó

mik đa tạ!hì hì

(tui cũng đang cần mà)

8 tháng 11 2017

Đặt đk đầu của đề bài bằng k rồi rút a, b,c và thay vào VT, VP.

9 tháng 11 2017

mình chưa hiểu ý của bạn lắm Hoàng Thị Ngọc Anh

5 tháng 2 2021

Ta thấy : b/a = d/c ⇒ad = bc (1)

Ta có: (a+2c)(b+d)=(a+c)(b+ad)

<=> ab+ad+2bc+2cd=ab+2ad+bc+2cd

<=> ab+ad+2bc+2cd-ab-2ad-bc-2cd=0

<=>-ad+bc=0<=>bc-ad=0<=>ad=bc=>(1) luôn đúng

=>ĐFCM

14 tháng 4 2017

đặt a/b=c/d=k
suy ra a=bk;c=dk
suy ra a-b/a+b=bk-b/bk+b=b(k-1)/b(k+1)=k-1/k+1              (1)
c-d/c+d=dk-d/dk+d=d(k-1)/d(k+1)=k-1/k+1                        (2)
từ 1 và 2 suy ra dpcm

8 tháng 11 2019

\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}.\)

\(\Rightarrow\frac{ac}{a^2+c^2}=\frac{bd}{b^2+d^2}\left(đpcm\right).\)

Chúc bạn học tốt!