K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2019

                          Giải

Ta có : a + b = c + d suy ra a = c + d - b 

Thay a = c + d - b vào đẳng thức ab + 1 = cd , ta được :

\(b\left(c+d-b\right)+1=cd\)

\(\Leftrightarrow cb+bd-b^2-cd=-1\)

\(\Leftrightarrow\left(cb-b^2\right)+\left(bd-cd\right)=-1\)

\(\Leftrightarrow b\left(c-b\right)+d\left(c-b\right)=-1\)

\(\Leftrightarrow\left(b+d\right)\left(c-b\right)=-1\)

\(\Rightarrow b+d=-\left(c-b\right)\)

\(\Rightarrow b+d=-c+b\)

\(\Rightarrow c=d\left(đpcm\right)\)

3 tháng 6 2016

Ta có :a+b=c+d

\(\Rightarrow\) a=c+d-b  

Thay vào ab+1=cd  

\(\Rightarrow\) (c+d-b)*b+1=cd  

\(\Leftrightarrow\)cb+db-cd+1-b2=0  

\(\Leftrightarrow\) b(c-b)-d(c-b)+1=0  

\(\Leftrightarrow\) (b-d)(c-b)=-1  

Ta lại có :a,b,c,d,nguyên nên (b-d) và (c-b) nguyên  

Mà (b-d)(c-b)=-1 nên có 2 trường hợp  

TH1: b-d=-1 và c-b=1  

\(\Leftrightarrow\) d=b+1 và c=b+1  

\(\Rightarrow\) c=d  (1)

TH2: b-d=1 và c-b=-1  

\(\Leftrightarrow\) d=b-1 và c=b-1  

\(\Rightarrow\) c=d   (2)

Vậy từ (1) và (2) ta có c=d.

24 tháng 10 2021

1, a-(-b+d)=c

=>a+b-d=c

=>a+b=c+d

17 tháng 8 2016

Giả sữ:

a/b=c/d tương đương (#) (a+b)/(a-b) = (c+d)/(c-d)

Ta có:

(a+b)/(a-b) = (c+d)/(c-d)

# (a+b)(c-d) = (c+d)(a-b)

# ac-ad+bc-bd = ac-bc+ad-bd

# 2ad = 2bc

# a/b = c/d – điều phải chứng minh.

17 tháng 8 2016

Đặt: a/b = c/d = k => a = bk, c = dk 
Ta có: 
a + b/a - b = bk + b/bk - b = b(k+1)/ b(k-1) = k+1/k-1 (1) 
c + d/c- d = dk +d/ dk - d = d(k+1)/d(k-1) = k+1/k-1 (2) 
Từ (1) và (2) => a+b/a-b = c+d/c-d