K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2015

Ta có:\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{c-a}{d-b}\)

Điều cần CM là \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\Rightarrow\frac{a^2+ac}{b^2+bd}=\frac{c^2-ac}{d^2-bd}\)

                                                       \(=\frac{a\left(a+c\right)}{b\left(b+d\right)}=\frac{c\left(c-a\right)}{d\left(d-b\right)}\)

Mà theo chứng minh trên ta có: \(\frac{a}{b}=\frac{c}{d};\frac{a+c}{b+d}=\frac{c-a}{d-b}\)

Từ đó ta\(\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)

 

2 tháng 8 2016

ban oi theo mình thì phải giải từ trên xuống từ a/b=c/d chứ

11 tháng 7 2015

đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

suy ra:\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k.k=k^2\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

vậy \(\frac{ab}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

11 tháng 7 2015

Ta có:\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}=>\frac{ac}{bd}=\frac{c^2}{d^2}\)

          \(\frac{c}{d}=\frac{a}{b}=>\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=>\frac{ac}{bd}=\frac{a^2}{b^2}\)

=>\(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

=>\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

29 tháng 7 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (*)

mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

Từ (*) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

29 tháng 7 2018

Thanks  bạn nhé

13 tháng 10 2019

Ta có:

\(\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\left(1\right)\)(do a/b=c/d)

\(\frac{c^2}{d^2}=\frac{c}{d}.\frac{c}{d}=\frac{c}{d}.\frac{a}{b}=\frac{ac}{bd}\left(2\right)\)(do a/b=c/d)

Từ(1),(2) \(\Rightarrow\frac{a^2}{b^2}=\frac{ac}{bd}=\frac{c^2}{d^2}\)

15 tháng 10 2019

Bổ sung đề:

Cho: \(\frac{a}{b}=\frac{c}{d}\). C/m \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

Đặt: \(\frac{a}{b}=\frac{c}{d}=k\)\(\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó: \(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{k^2.\left(bd\right)}{bd}=k^2\)                                                                   \(\left(1\right)\)

Và: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)         \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)\(\left(đpcm\right)\)

15 tháng 10 2019

tích cho t đi

29 tháng 9 2019

Đặt \(\frac{a}{c}=\frac{b}{d}=k\)

\(\Rightarrow a=ck;b=dk\)

Khi đó : \(\frac{ac}{bd}=\frac{ckc}{dkd}=\frac{c^2}{d^2}\left(1\right)\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}\left(2\right)\)

Từ (1) và  (2) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(\text{đpcm}\right)\)

29 tháng 9 2019
a/c=b/d=a^2/c^2=b^2/d^2 Theo tc dãy tỉ số = nhau,ta có: a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2 (1) a/c=b/d=a/c×a/c=b/d×a/c( nhân 2vế vs a/c) =a^2/c^2=a.b/c.d (2) Từ (1);(2)=>a.c/b.d=a^2+c^2/b^2+d^2 Mk chắc chắn dug.k cho mk