Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\Sigma\frac{ab}{a^2+b^2-c^2}\)
\(B=\frac{ab}{a^2+\left(b-c\right)\left(b+c\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}+\frac{ac}{c^2+\left(a-b\right)\left(a+b\right)}\)
\(B=\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ac}{c^2-c\left(a-b\right)}\)
\(B=\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ac}{c\left(c-a+b\right)}\)
\(B=\frac{b}{a+b+c-2b}+\frac{c}{a+b+c-2c}+\frac{a}{a+b+c-2a}\)
\(B=\frac{-b}{2b}+\frac{-c}{2c}+\frac{-a}{2a}\)
\(B=\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{2}\)
\(B=\frac{-3}{2}\)
ĐK: x;y;z\(\ne0\)
a + b + c = => (a + b + c)2 = 1
=> a2 + b2 + c2 + 2(ab + bc + ca) = 1
Theo đề bài lại có: a2 + b2 + c2 = 1
Do đó 2(ab + bc + ca) = 0
<=> ab + bc + ca = 0
Ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)\(\Rightarrow\frac{a^2}{x^2}=\frac{ab}{xy}=\frac{bc}{yz}=\frac{ac}{xz}\) (*)
+ Nếu xy + yz + xz = 0, ta có đpcm
+ Nếu \(xy+yz+xz\ne0\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\frac{a^2}{x^2}=\frac{ab}{xy}=\frac{bc}{yz}=\frac{ca}{xz}=\frac{ab+bc+ca}{xy+yz+xz}=0\)\(\Rightarrow a=b=c=0\)
=> a + b + c = 0, mâu thuẫn với đề
Vậy ta có đcpm
a) \(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{\left(a^2+b^2\right)}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(*) (luôn đúng)
=> ĐPCM.
c) áp dụng BĐT Cô si cho hai số dương a và b , ta có:
\(a+b\ge2\sqrt{ab}\text{ va }\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
dấu "=" xảy ra khi <=> a = b.
P/s: bn tự làm nốt câu b) d) đi nha!
Ta có: \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(\Rightarrow\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}}\)
Tương tự ta có:
\(\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ac}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)
Cộng theo vế ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}\)
\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}}{2abc}+\frac{\sqrt{ac}}{2abc}+\frac{\sqrt{ab}}{2abc}\)
\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{2abc}\le\frac{a+b+c}{2abc}\)
Đẳng thức xảy ra khi \(a=b=c\)
a) \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( luôn đúng )
Dấu "=" \(\Leftrightarrow a=b=c\)
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
+) vế 1 bđt \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )
+) vế 2 bđt \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )
Từ đây ta có đpcm
Dấu "=" \(\Leftrightarrow a=b=c\)
c) \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Dấu "=" \(\Leftrightarrow a=b\)
a, Ta xét hiệu \(\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2\)
\(=\frac{2\left(a^2+b^2\right)}{4}-\frac{a^2+2ab+b^2}{4}=\frac{1}{4}\left(2a^2+2b^2-a^2-b^2-2ab\right)=\frac{1}{4}\left(a+b\right)^2\ge0\)
Vậy \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2.\)
Dấu "="xảy ra khi a = b.
b, Ta xét hiệu:
\(\frac{a^2+b^2+c^2}{3}-\left(\frac{a+b+c}{3}\right)^2=\frac{1}{9}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
Vậy \(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)
Dấu "=" xảy ra khi a = b = c.
Cách khác:\(a^2+b^2\ge2ab\Leftrightarrow a^2+b^2+a^2+b^2\ge\left(a+b\right)^2\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\frac{a^2+b^2}{2}\ge\frac{\frac{\left(a+b\right)^2}{2}}{2}=\left(\frac{a+b}{2}\right)^2\)
Dấu " = " xảy ra <=> a=b
Ta có a+b+c=0
<=> a+b=-c <=>a2+b2-c2=-2ab
b+c=-a <=> b2+c2-a2=-2bc
c+a=-b <=> c2+a2-b2=-2ca
Thay vào biểu thức ta có
\(B=\frac{ab}{-2ab}-\frac{bc}{2bc}-\frac{ca}{2ca}=\frac{-3}{2}\)