\(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

\(\Rightarrow VT=\dfrac{ab}{a^2+b^2-c^{^2}}+\dfrac{bc}{b^2+c^2-a^{^2}}+\dfrac{ca}{c^2+a^2-b^{^2}}\\ =\dfrac{ab}{a^2+\left(b+c\right)\left(b-c\right)}+\dfrac{bc}{b^2+\left(c+a\right)\left(c-a\right)}+\dfrac{ca}{c^2+\left(a+b\right)\left(a-b\right)}\\ =\dfrac{ab}{a^2-a\left(b-c\right)}+\dfrac{bc}{b^2-b\left(c-a\right)}+\dfrac{ca}{c^2-c\left(a-b\right)}\\ =\dfrac{b}{a-b+c}+\dfrac{c}{b-c+a}+\dfrac{a}{c-a+b}\\ =\dfrac{b}{\left(a+c\right)-b}+\dfrac{c}{\left(a+b\right)-c}+\dfrac{a}{\left(c+b\right)-a}\\ =\dfrac{b}{-b-b}+\dfrac{c}{-c-c}+\dfrac{a}{-a-a}\\ =\dfrac{b}{-2b}+\dfrac{c}{-2c}+\dfrac{a}{-2a}\\ =-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}=-\dfrac{3}{2}=VP\)

8 tháng 8 2018

Có BĐT: \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Ta có:

\(VT=\)\(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)

\(=\dfrac{1+1+c^2}{\left(a^2+b^2+1\right)\left(1+1+c^2\right)}+\dfrac{1+1+a^2}{\left(b^2+c^2+1\right)\left(1+1+a^2\right)}+\dfrac{1+1+b^2}{\left(c^2+a^2+1\right)\left(1+1+b^2\right)}\)

Áp dụng BĐT Bunhiacopski cho mẫu số, ta có:

\(\left(a^2+b^2+c^2\right)\left(1+1+c^2\right)\ge\left(a+b+c\right)^2\)

\(\left(b^2+c^2+1\right)\left(1+1+a^2\right)\ge\left(b+c+a\right)^2\)

\(\left(c^2+a^2+1\right)\left(1+1+b^2\right)\ge\left(c+a+b\right)^2\)

\(\Rightarrow VT\le\dfrac{1+1+c^2}{\left(a+b+c\right)^2}+\dfrac{1+1+a^2}{\left(b+c+a\right)^2}+\dfrac{1+1+b^2}{\left(c+a+b\right)^2}=\dfrac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}\le\dfrac{6+ab+bc+ca}{3\left(ab+bc+ca\right)}=\dfrac{6+3}{3.3}=1\)

\("="\Leftrightarrow a=b=c=1\)

14 tháng 7 2017

a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)

\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)

\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)

14 tháng 7 2017

b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)

\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)

AH
Akai Haruma
Giáo viên
19 tháng 6 2021

Lời giải tại link sau:

https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duongcmr-dfrac1a2bcdfrac1b2acdfrac1c2abledfracabc2abc.193908584039

26 tháng 11 2018

a+b+c=1 de lam j vay nhi ?

27 tháng 11 2018

Nguyễn Huy Thắng trước đó có bài bđt liên quan đó a

28 tháng 2 2019

Mình làm được rồi :'>

28 tháng 2 2019

rảnh v~

Làm được rồi tức là không cần nữa???

9 tháng 12 2018

a)Bunhia:

\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)

b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng bđt câu a

=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)

\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)

Tự tìm dấu "="

9 tháng 12 2018

Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh

14 tháng 8 2018

Ta có :

\(VT=\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{bc+ab}+\dfrac{c^4}{ac+bc}\)

Theo BĐT Cauchy ta có :

\(\dfrac{a^4}{ab+ac}+\dfrac{b^4}{bc+ab}+\dfrac{c^4}{ac+bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ac\right)}\)

Theo BĐT Cô - Si ta lại có : \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow VT\ge\dfrac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}=\dfrac{1}{2}\)