K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2023

a. Xét Δ HBA và Δ ABC:

      \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung 

\(\Rightarrow\)  Δ HBA \(\sim\) Δ ABC (g.g)

Ta có:  Δ HBA \(\sim\) Δ ABC

     \(\dfrac{BA}{BC}=\dfrac{HB}{AB}\) 

\(\Rightarrow AB^2=BH.BC\) 

Ta có: \(\widehat{HAC}+\widehat{C}=90^0\) 

mà \(\widehat{HAC}+\widehat{BAH}\) = 900 

\(\Rightarrow\widehat{C}=\widehat{BAH}\)

Do E là đường phân giác \(\widehat{B}\) 

\(\Rightarrow\widehat{ABE}=\widehat{EBC}\)  hay \(\widehat{ABD}=\widehat{EBC}\) 

 Xét  Δ ADB và Δ CEB:

       \(\widehat{C}=\widehat{BAH}\) 

       \(\widehat{ABD}=\widehat{EBC}\) 

\(\Rightarrow\)  Δ ABD \(\sim\) Δ CEB (g.g)

c. Ta có:  \(\widehat{AEB}=\widehat{ADE}\)  hay \(\widehat{AED}=\widehat{ADE}\) 

\(\Rightarrow\)  Δ ADE là tam giác cân tại A

30 tháng 4 2016

a)C/m AB2=BH.BC

Xét 2 tam giác vuông ABH và CBA có

góc B chung

=>tam giác ABH đồng fạng với tám giác CBA(g.g)

\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow\)\(AB.AB=BH.BC=AB^2=BH.BC\)

30 tháng 4 2016

a, xét tam giac ABC va HBA có:

      góc A = góc H = 90 độ

      góc B chung

   => ABC  dong dang voi HBA (G.G)

   => AB/BH = BC/AB

   => AB^2 = BH.BC (dpcm)

còn ý b ,c mk k pít

1 tháng 5 2016

Cho  ABC vuông tại A, có AH đường cao.

a)      Chứng minh : AB2 = BH.BC

b)      Tia phân giác của góc B cắt AH tại D và cắt AC tại E. chứng minh :     ADB đồng dạng CED.

c)       Tam giác ADE là tam giác gì ? Vì sao ?

Câu hỏi tương tự Đọc thêm
Toán lớp 8
              
2 tháng 5 2016

Xét tam giác ABH và CBA,có:

góc BHA = góc CHA =90'

góc B chung

=>tam giác ABH đồng dạng CBA(g.g)

=>AB/BH=BC./AB

=>2AB=BH.BC

1 tháng 3 2020

A B C H E F I K 1 1 1

a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=4,8\left(cm\right)\)

b)  Xét tam giác AEH và tam giác AHB có:

\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)

c) Xét tam giác AHC và tam giác AFH có:

\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)

\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ ) 

\(\Rightarrow AH^2=AC.AF\)

d) Xét tứ giác AEHF có:

\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)

\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )

\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)

Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)

\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)

Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)

Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)

Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)

Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)

Xét tam giác ABC và tam giác AFE có:

\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)

e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)

Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC

\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc)  (6)

Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF

\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc)  (7)

Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)

\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)