Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)
Vậy...
=> 2(a^2 + b^2 + c^2) = 2 ( ab + bc +ca)
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac
=> a^2 - 2ab + b^2 + b^2 - 2bc+ c^2 + c^2 - 2ac + a^2 = 0
=> ( a- b)^2 + ( b- c)^2 + ( c -a )^2 = 0
Vì ( a- b)^2>=0 (1)
( b - c)^2 >= 0 (2)
( c -a )^2 >= 0 (3)
Từ (1)(2) và (3) => ( a- b)^2 + ( b- c)^2 + ( c -a )^2 = 0 khi
a - b = 0 và b - c = 0 và c - a = 0
=> a = b và b = c và c = a
=> a= b =c
VẬy là tam giác đều ĐÁp ấn C
a^2+b^2+c^2=ab+bc+ca=>2(a^2+b^2+c^2)=2(ab+ac+ca)
2a^2+2b^2+2c^2-2ab-2ac-2bc=0.
a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+c^2=0
(a-b)^2+(b-c)^2+(c-a)^2=0. => (a-b)^2=0 => a-b=0 => a=b
(b-c)^2=0 => b-c=0 => b=c
(c-a)^2=0 => c-a=0 =>c=a. Vậy a=b=c. Do đó tam giác đó là tam giác đều => C là đáp án đúng
ta có \(\left(a-b\right)^2>=0\) => \(a^2+b^2>=2ab\)
tương tự ta có \(b^2+c^2>=2bc\)
\(c^2+a^2>=2ac\)
cộng từng vế của 3 BĐt cùng chiều ta có \(2\left(a^2+b^2+c^2\right)>=2\left(ab+bc+ca\right)\)
=> \(a^2+b^2+c^2>=ab+bc+ca\)
dấu = xảy ra <=> \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
<=> a=b=c
<=> tam giác ABC là tam giác đều(ĐPCM)
Từ giả thiết suy ra
(a-b)^2+(b-c)^2+(a-c)^2=0 (nhân bung cái này sẽ ra cái giả thiết ban đầu).
Từ đó suy ra: a=b, b=c và c=a. (Do tổng của 3 bình phương mà lại bằng 0 tức là các bình phương đó đều phải bằng 0). Suy ra tam giác đó đều
Cách của bạn phía trên sai. Bạn đang chứng minh chiều nghịch của bài toán
tam giác đều b nhé
vì: 2a2+2b2+2c2=2ab+2ac+2bc
(a2+b2-2ab)+(a2+c2-2ac)+(b2+c2+2bc)=0
(a-b)2+(a-c)2+(b-c)2=0
a-b=0;a-c=0;b-c=0
=>a=b;a=c;b=c
vì a,b,c là 3 cạnh tam giác => a=b=c => tam giác đó là tam giác đều
2a2b2+ 2b2c2+ 2c2a2- a4- b4- c4
=4a2b2-(a4+2a2b2+b4)+(2b2c2+2a2c2)-c4
=2(ab)2-(a+b)2+2c2(a2+b2)-c4
=2(ab)2-[(a+b)2-2c2(a2+b2)+c4]
=2(ab)2-(b2+a2-c2)2
=(2ab+b2+a2-c2)(2ab-b2-a2+c2)
=[(a+b)2-c2][-(a-b)2+c2]
=(a+b-c)(a+b+c)(c-a+b)(a+c-b)
Vì a,b,c là 3 cạnh 1 tam giác nên:
a+b>c suy ra b+a-c>0
a+c>b suy ra a-b+c>0
a,b,c>0 suy ra a+b+c>0
b+c>a suy ra b+c-a>0
Vậy ta có điều phải chứng minh
\(A=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)
\(=4a^2b^2-\left(2a^2b^2-2b^2c^2-2a^2c^2+a^4+b^4+c^4\right)\)
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(c+a-b\right)\left(c-a+b\right)\left(a+b-c\right)\left(a+b+c\right)\)
Nếu a,b,c là độ dài 3 cạnh thì ta có:
c + a > b (bất đẳng thức tam giác)
a + b > c (bất đẳng thức tam giác)
b + c > a (bất đẳng thức tam giác)
mà a,b,c > 0
=> a + b + c dương
a + c - b dương
a + b - c dương
b + c - a dương
=> A dương
Ta có : \(\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(\Leftrightarrow a^2+b^2+4c^2+2ab-4bc-4ac+b^2+c^2+4a^2+2bc-4ca-4ab+c^2+a^2+4b^2+2ac-4bc-4ab=...\)
\(\Leftrightarrow6a^2+6b^2+6c^2-6\left(ab+bc+ca\right)=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\)
\(\Leftrightarrow6a^2+6b^2+6c^2-6\left(ab+bc+ca\right)-a^2+2ab-b^2-b^2+2bc-c^2-c^2+2ca-a^2=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow a=b=c\)
<=> Tam giác đó là tam giác đều .
Vậy ...
thanks