\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

Vì vai trò của a,b,c là như nhau, giả sử

\(a\ge c\ge b>0\)

Ta có

\(a+b-c< a\)

\(\Leftrightarrow b-c\le0\) ( đúng với gt )

\(\Rightarrow a+b-c< a\)

\(\Leftrightarrow\left(a+b-c\right)^2< a^2\)

\(\Leftrightarrow\dfrac{1}{\left(a+b-c\right)^2}\ge\dfrac{1}{a^2}\)

CMTT :

\(\dfrac{1}{\left(b+c-a\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{c^2}\)

Cộng vế với vế 3 BĐT trên , được

\(\dfrac{1}{\left(a+b-c\right)^2}+\dfrac{1}{\left(b+c-a\right)^2}+\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

12 tháng 2 2018

theo de bai ta co \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\) suy ra ab+bc+ac=abc

\(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ac}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)

nên vt =\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(c+b\right)}\)

nx \(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\) >= \(\dfrac{3a}{4}\)

ttu vt>= \(\dfrac{3\left(a+b+c\right)}{4}-\left(\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{a+b}{8}+\dfrac{b+c}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\right)\) =\(\dfrac{a+b+c}{4}\)

dau = say ra a=b=c=3

17 tháng 10 2017

sửa đề bài tẹo : \(\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\times2\ge\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}+3\)

30 tháng 12 2017

Dễ dàng chứng minh bất đẳng thức phụ :

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a;b>0\)và p - a; p - b; p - c > 0 theo bất đẳng thức trong tam giác.

Áp dụng bất đẳng thức phụ vừa chứng minh, ta có:

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{2p-a-b}=\dfrac{4}{c}\left(1\right)\)

\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{2p-b-c}=\dfrac{4}{a}\left(2\right)\)

\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{2p-c-a}=\dfrac{4}{a}\left(3\right)\)

Cộng (1); (2); (3) theo vế, ta có:

\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\RightarrowĐPCM\)

30 tháng 12 2017

Ta CM BĐT sau :

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Thật vậy ; ta có :

\(\left(x-y\right)^2\ge0\\ \Rightarrow x^2-2xy+y^2\ge0\\ \Rightarrow x^2+y^2\ge2xy\\ \Rightarrow\left(x+y\right)^2\ge4xy\\ \Rightarrow\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\\ \Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\left(đpcm\right)\)

\(\Rightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{2p-\left(a+b\right)}=\dfrac{4}{c}\\ \dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{a}\\ \dfrac{1}{p-a}+\dfrac{1}{p-c}\ge\dfrac{4}{b}\\ \Rightarrow2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\\ \Rightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(đpcm\right)\)

7 tháng 12 2017

1) Đặt T là vế trái của BĐT

Áp dụng BĐT Cauchy-Schwarz và AM-GM, ta có:

\(T=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\ge\dfrac{1}{x^2+y^2+z^2}=1\)

Vậy ta có đpcm.Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

7 tháng 12 2017

3)b) Đặt T là vế trái, áp dụng AM-GM ta có:

\(b+c=\left(b+c\right)\left(a+b+c\right)^2\ge\left(b+c\right)4a\left(b+c\right)=4a\left(b+c\right)^2\ge16abc\)

14 tháng 10 2021

\(A=\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}\ge\dfrac{4}{2b}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{4}{b+c-a+c+a-b}\ge\dfrac{4}{2c}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{4}{a+b-c+c+a-b}\ge\dfrac{4}{2a}\ge\dfrac{2}{a}\end{matrix}\right.\)

\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\right)\ge\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow A\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(dấu"="xảy\) \(ra\Leftrightarrow a=b=c\)

10 tháng 11 2018

theo BĐT cauchy schwars engel ta có

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)

\(\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{\left(1+1\right)^2}{a+c}=\dfrac{4}{a+c}\)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1\right)^2}{b+c}=\dfrac{4}{b+c}\)

cộng vế theo vế ta có \(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{a+c}\right)\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{a+c}\)

vậy đpcm