Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(ab+bc+ca=abc\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt: \(A=\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\)
\(\Rightarrow A=\frac{\frac{1}{b}.\frac{1}{c}}{1+\frac{1}{a}}+\frac{\frac{1}{c}.\frac{1}{a}}{1+\frac{1}{b}}+\frac{\frac{1}{b}.\frac{1}{a}}{1+\frac{1}{c}}\)
Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow x+y+z=1\)
\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\)
Ta có: \(\frac{xy}{z+1}=\frac{xy}{\left(z+x\right)+\left(z+y\right)}\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)
Chứng minh tương tự ta được:
\(\frac{yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)
\(\frac{zx}{y+1}\le\frac{zx}{x+y}+\frac{zx}{y+z}\)
Cộng vế với vế:
\(\Rightarrow A\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\left(đpcm\right)\)
Đặt: \(M=\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}=\Sigma_{cyc}\frac{a}{a^2+ab+bc+ca}\)
\(\Rightarrow M.\left(a+b+c\right)=3-\Sigma_{cyc}\frac{bc}{a^2+ab+bc+ca}\)
Đến đây t cần chứng minh:
\(\frac{bc}{a^2+ab+bc+ca}+\frac{ca}{b^2+ab+bc+ca}+\frac{ab}{c^2+ab+bc+ca}\ge\frac{3}{4}\) (*)
Từ điều kiện ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\left(x,y,z>0\right)\)
\(\Rightarrow x+y+z=1\)
(*) \(\Leftrightarrow\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{y^2}{\left(x+y\right)\left(y+z\right)}+\frac{z^2}{\left(y+z\right)\left(z+x\right)}\ge\frac{3}{4}\)
Theo Cô-si: \(\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{9}{16}\left(x+y\right)\left(z+x\right)\ge\frac{3}{2}x\)
Nhứng phần kia tương tự
\(\Rightarrow\Sigma_{cyc}\frac{x^2}{\left(x+y\right)\left(z+x\right)}\ge\frac{3}{2}\left(x+y+z\right)-\frac{9}{16}\left[\left(x+y+z\right)^2+\left(xy+yz+zx\right)\right]\ge\frac{3}{4}\)
Lần trước làm không đúng hy vọng bây giờ gỡ lại được
(
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhh
*Giá trị nhỏ nhất của A đặt được khi \(ab=12;bc=8\)tại điểm rơi \(a=3,b=4,c=2\)Ta áp dụng bất đẳng thức cho từng nhóm sau:
\(\left(\frac{a}{18};\frac{b}{24};\frac{2}{ab}\right),\left(\frac{a}{9};\frac{c}{6};\frac{2}{ca}\right),\left(\frac{b}{16};\frac{c}{8};\frac{2}{bc}\right),\left(\frac{a}{9};\frac{c}{6};\frac{b}{12};\frac{8}{abc}\right)\)
Áp dụng bất đẳng thức Cô si, ta có:
\(\frac{a}{18}+\frac{b}{24}+\frac{2}{ab}\ge3\sqrt[3]{\frac{a}{18}\cdot\frac{b}{24}\cdot\frac{2}{ab}}=\frac{1}{2}\)
\(\frac{a}{9}+\frac{c}{6}+\frac{2}{ca}\ge3\sqrt[3]{\frac{a}{9}\cdot\frac{c}{6}\cdot\frac{2}{ca}}=1\)
\(\frac{b}{16}+\frac{c}{8}+\frac{2}{bc}\ge3\sqrt[3]{\frac{b}{16}\cdot\frac{c}{8}\cdot\frac{2}{bc}}=\frac{3}{4}\)
\(\frac{a}{9}+\frac{c}{6}+\frac{b}{12}+\frac{8}{abc}\ge4\sqrt[4]{\frac{a}{9}\cdot\frac{c}{6}\cdot\frac{b}{12}\cdot\frac{8}{abc}}=\frac{4}{3}\)
\(\frac{13a}{18}+\frac{13b}{24}\ge2\sqrt{\frac{13a}{18}\cdot\frac{13b}{24}}\ge2\sqrt{\frac{13}{18}\cdot\frac{13}{24}\cdot12}=\frac{13}{3}\)
\(\frac{13b}{48}+\frac{13c}{24}\ge2\sqrt{\frac{13b}{48}\cdot\frac{13c}{24}}\ge2\sqrt{\frac{13}{48}\cdot\frac{13}{24}\cdot8}=\frac{13}{4}\)
Cộng theo vế các bất đẳng thức trên ta được:
\(\left(a+b+c\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{8}{abc}\ge\frac{121}{12}\left(đpcm\right)\)
Đẳng thức xảy ra khi \(a=3;b=4;c=2\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=xyz\) thì bài toán trở thành
Cho \(x+y+z=xyz\) chứng minh
\(P=xyz+\frac{x^2y^2z^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{9\sqrt{3}}{3}\)
Ta có:
\(t=x+y+z=xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{t^3}{27}\)
\(\Leftrightarrow t\ge3\sqrt{3}\)
Ta lại có:
\(P\ge\left(x+y+z\right)+\frac{\left(x+y+z\right)^2}{\frac{8\left(x+y+z\right)^3}{27}}=t+\frac{27}{8t}\)
\(=\left(t+\frac{27}{t}\right)-\frac{189}{8t}\ge6\sqrt{3}-\frac{189}{8.3\sqrt{3}}=\frac{27\sqrt{3}}{8}\)
PS: Đề sai rồi nha.
Sửa đề: Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng
\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)
Áp dụng bđt Cauchy-Schwarz ta có:
\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)
Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)
\(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)
Cộng từng vế các bđt trên ta được
\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1
\(\left(a;b;c\right)=\left(2x;2y;2z\right)\) (ko đặt ẩn phụ cũng được, đặt số nhỏ cho dễ nhìn thôi)
BĐT trở thành:
\(\frac{x}{xz+1}+\frac{y}{xy+1}+\frac{z}{yz+1}\le\frac{x^2+y^2+z^2}{2}\) với \(xyz=1\) \(\Rightarrow x^2+y^2+z^2\ge3\) (1)
Ta có:
\(VT\le\frac{1}{4}\left(\frac{1}{z}+x+\frac{1}{x}+y+\frac{1}{y}+z\right)=\frac{1}{4}\left(\frac{xy+yz+zx}{xyz}+x+y+z\right)\)
\(VT\le\frac{1}{4}\left(xy+yz+zx+x+y+z\right)\le\frac{1}{4}\left(x^2+y^2+z^2+\sqrt{3\left(x^2+y^2+z^2\right)}\right)\)
Do đó ta chỉ cần chứng minh:
\(\frac{1}{4}\left(x^2+y^2+z^2+\sqrt{3\left(x^2+y^2+z^2\right)}\right)\le\frac{x^2+y^2+z^2}{2}\)
\(\Leftrightarrow x^2+y^2+z^2\ge\sqrt{3\left(x^2+y^2+z^2\right)}\)
\(\Leftrightarrow x^2+y^2+z^2\ge3\) (đúng theo (1))