Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: để a2+b2+c2 bé hoặc bằng 5 thì a+b+c=3 và phải đạt giá trị lớn nhất
suy ra 1 số =2 1 số =1 1 số = 0
22+12+02=4+1+0=5
Vậy giá trị lớn nhất có thể đạt đc là 5 suy ra a2+b2+c2 bé hoặc bằng 5(đpcm)
\(\left(a+b+c\right)^2=9\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=9\)
Có \(2\left(ab+bc+ac\right)\ge2.3\sqrt[3]{a^2b^2c^2}=6\sqrt[3]{a^2b^2c^2}\left(BĐTcosi\right)\)
Dấu "=" xảy ra khi a = b = c
\(a^2+b^2+c^2\le9-6\sqrt[3]{a^2b^2c^2}\le9-6=3\)
Vậy .......
a) Xét hiệu a2+b2+c2+d2 -(a+b+c+d)
=a(a-10+b(b-1)+c(c-1)+d(d-1) \(⋮\)2
mà a2+b2+c2+d2 \(\ge\)0
=> a+b+c+d \(⋮\)2
hay a+b+c+d là hợp số
Tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-abcd-la-cac-so-tu-nhien-thoa-man-doi-1-khac-nhau-va-a2d2b2c2tchung-minh-abcd-va-acbd-khong-the-dong-thoi-la-so-nguyen-to.1540844491932
Ta có:
\(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)
\(\Leftrightarrow ac^2+ab^2=ca^2+cb^2\)
\(\Leftrightarrow ac\left(c-a\right)=b^2\left(c-a\right)\)
\(\Leftrightarrow ac=b^2\)
Thế vô ta được
\(a^2+b^2+c^2=a^2+2ac+c^2+b^2-2ac\)
\(=\left(a+c\right)^2-b^2=\left(a+c-b\right)\left(a+c+b\right)\)
Làm nốt
Ta có :
a^2>hoặc=0(vì mang số mũ dương)
Tương tự => b^2 và c ^2 như a^2
mà a^2+b^2+c^2=1=>a=b=c=1
=> a^2016+b^2017+c^2018=1
Mình nghĩ \(a+b+c=1\) nữa chắc oke hơn :3
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow1-3abc=1-ab-bc-ca\Rightarrow3abc=ab+bc+ca\)
\(1=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(=1+2\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca=0\Rightarrow3abc=0\)
Nếu \(a=0\Rightarrow b+c=1;b^2+c^2=1;b^3+c^3=1\)
\(\Rightarrow b^2+2bc+c^2=1\Rightarrow2bc=0\Rightarrow b=0\left(h\right)c=0\)
Cứ tiếp tục thì sẽ ra nhá :))