Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hả?
bài để thi hok kì I đó hả? đúng khó *_*
mk sẽ ghi lại để sau này mk hok
Ta co:
\(\sqrt[4]{4}VT=\sqrt[4]{4}\sqrt[4]{a^3}+\sqrt[4]{4}\sqrt[4]{b^3}+\sqrt[4]{4}\sqrt[4]{c^3}\)
\(=\sqrt[4]{4a^3}+\sqrt[4]{4b^3}+\sqrt[4]{4c^3}\)
\(=\sqrt[4]{\left(a+b+c\right)a^3}+\sqrt[4]{\left(a+b+c\right)b^3}+\sqrt[4]{\left(a+b+c\right)c^3}\)
\(>\sqrt[4]{a^4}+\sqrt[4]{b^4}+\sqrt[4]{c^4}=a+b+c\)
\(\Rightarrow VT>\frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)
Ta có:
\(a+b+c=4\)
\(\Rightarrow\) \(a< 4\)
\(\Rightarrow\) \(a^4< 4a^3\) (do \(a>0\) nên \(a^3>0\) )
Do đó, \(a^3>\frac{a^4}{4}\) hay nói cách khác, \(\sqrt[4]{a^3}>\sqrt[4]{\frac{a^4}{4}}=\frac{a}{\sqrt[4]{4}}\) \(\left(1\right)\)
Từ đó, ta cũng tương tự thiết lập được: \(\sqrt[4]{b^3}>\frac{b}{\sqrt[4]{4}}\) \(\left(2\right)\) và \(\sqrt[4]{c^3}>\frac{c}{\sqrt[4]{4}}\) \(\left(3\right)\)
Cộng từng vế các bđt \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) ta có:
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>\frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)
tạm thời chưa nghĩ ra cách dùng \(a^3+b^3\ge a^2b+ab^2=ab\left(a+b\right)\) :'<
Có: \(\sqrt[3]{4\left(a^3+b^3\right)}=\sqrt[3]{2\left(a+b\right)\left(2a^2-2ab+2b^2\right)}\)
\(=\sqrt[3]{2\left(a+b\right)\left[\frac{1}{2}\left(a+b\right)^2+\frac{3}{2}\left(a-b\right)^2\right]}=\sqrt[3]{2\left(a+b\right)\frac{1}{2}\left(a+b\right)^2}=a+b\)
Tương tự cộng lại ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
ư ư.. ra r :))))))))) cộng thêm Cauchy-Schwarz nữa nhé
Có: \(a^3+b^3\ge a^2b+ab^2\)\(\Leftrightarrow\)\(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2=\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow\)\(\sqrt[3]{4\left(a^3+b^3\right)}\ge\sqrt[3]{2\left(a+b\right)\left(a^2+b^2\right)}\ge\sqrt[3]{2\left(a+b\right).\frac{\left(a+b\right)^2}{2}}=a+b\)
Tương tự cộng lại ra đpcm
bạn cũng vậy năm mới vui vẻ nha
Mình không giải đc bài kia
tick hộ tôi tôi giải cho