\(\left(\dfrac{1}{a}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 3 2021

Ta có:

\(P=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c+36abc\right)\)

\(P=\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{b}+\dfrac{a}{c}+\dfrac{c}{a}+3+36\left(ab+bc+ca\right)\)

\(P=\dfrac{a^2+b^2}{ab}+\dfrac{b^2+c^2}{bc}+\dfrac{c^2+a^2}{ca}+3+36\left(ab+bc+ca\right)\)

\(P=\dfrac{\left(a+b\right)^2}{ab}+\dfrac{\left(b+c\right)^2}{bc}+\dfrac{\left(c+a\right)^2}{ca}-3+36\left(ab+bc+ca\right)\)

\(P\ge\dfrac{4\left(a+b+c\right)^2}{ab+bc+ca}-3+36\left(ab+bc+ca\right)\)

\(P\ge\dfrac{4}{ab+bc+ca}+36\left(ab+bc+ca\right)-3\ge2\sqrt{\dfrac{4.36\left(ab+bc+ca\right)}{ab+bc+ca}}-3=21\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

Nếu bạn học dồn biến- thừa trừ rồi thì có thể làm như sau:

$P=\frac{ab+bc+ac}{abc}(1+36abc)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+36(ab+bc+ac)=f(a,b,c)$

Giả sử $c=\max(a,b,c)$. Ta sẽ chứng minh $f(a,b,c)\geq f(\frac{a+b}{2}, \frac{a+b}{2}, c)$

Thật vậy:

\(f(a,b,c)- f(\frac{a+b}{2}, \frac{a+b}{2}, c)=\frac{(a+b)^2-4ab}{ab(a+b)}+36.\frac{4ab-(a+b)^2}{4}\)

\(=\frac{(a-b)^2}{ab(a+b)}-9(a-b)^2=(a-b)^2(\frac{1}{ab(a+b)}-9)\)

Vì $c=\max (a,b,c)$ mà $a+b+c=1\Rightarrow a+b\leq \frac{2}{3}$

$\Rightarrow ab\leq \frac{1}{4}(a+b)^2\leq \frac{1}{9}$

$\Rightarrow \frac{1}{ab(a+b)}\geq \frac{27}{2}$

$\Rightarrow \frac{1}{ab(a+b)}-9>0$

Do đó: $f(a,b,c)\geq f(\frac{a+b}{2}, \frac{a+b}{2}, c)$

Mà:

$f(\frac{a+b}{2}, \frac{a+b}{2}, c)-21=\frac{4}{a+b}+\frac{1}{c}+36[\frac{(a+b)^2}{4}+c(a+b)]-21$

$=\frac{4}{1-c}+\frac{1}{c}+9(1-c)^2+36c(1-c)-21$

$=\frac{3c+1}{c(1-c)}+9(1-c)^2+36c(1-c)-21$

$=(3c-1)^2.\frac{3c^2-3c+1}{c(1-c)}\geq 0$ với mọi $1>c\geq \frac{1}{3}$

Do đó $f(\frac{a+b}{2}, \frac{a+b}{2}, c)\geq 21$

$\Rightarrow f(a,b,c)\geq 21$

Hay $P_{\min}=21$

NV
21 tháng 8 2021

\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)

\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)

21 tháng 8 2021

∑ cái này nghĩa là gì ạ

NV
23 tháng 1 2021

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
13 tháng 11 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{1}{1+\frac{1}{a^3}}+\frac{1}{1+\frac{1}{b^3}}+\frac{1}{1+\frac{1}{c^3}}\geq 3\sqrt[3]{\frac{1}{(1+\frac{1}{a^3})(1+\frac{1}{b^3})(1+\frac{1}{c^3})}}\)

\(\frac{\frac{1}{a^3}}{1+\frac{1}{a^3}}+\frac{\frac{1}{b^3}}{1+\frac{1}{b^3}}+\frac{\frac{1}{c^3}}{1+\frac{1}{c^3}}\geq 3\sqrt[3]{\frac{\frac{1}{a^3b^3c^3}}{(1+\frac{1}{a^3})(1+\frac{1}{b^3})(1+\frac{1}{c^3})}}\)

Cộng theo vế:

\(\Rightarrow 3\geq 3.\frac{1+\frac{1}{abc}}{\sqrt[3]{(1+\frac{1}{a^3})(1+\frac{1}{b^3})(1+\frac{1}{c^3})}}\)

\(\Rightarrow P=(1+\frac{1}{a^3})(1+\frac{1}{b^3})(1+\frac{1}{c^3})\geq (1+\frac{1}{abc})^3\)

Mà theo AM-GM: \(6=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq 8\)

\(\Rightarrow P\geq (1+\frac{1}{abc})^3\geq (1+\frac{1}{8})^3=\frac{729}{512}\)

Vậy \(P_{\min}=\frac{729}{512}\Leftrightarrow a=b=c=2\)

17 tháng 6 2019

12. Ta có \(ab\le\frac{a^2+b^2}{2}\)

=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó 

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu bằng xảy ra khi a=b=c=1

Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1

17 tháng 6 2019

13.  Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)

=> \(1\ge\frac{9}{a+b+c+3}\)

=> \(a+b+c\ge6\)

Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)

Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)

Cộng 3 BT trên ta có

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)

Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)

=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)

Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)

<=> \(a^2+b^2\ge2ab\)(luôn đúng )

=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)

=> \(P\ge2\)

Vậy \(MinP=2\)khi a=b=c=2

Lưu ý : Chỗ .... là tương tự 

13 tháng 4 2018

\(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\) \(\Leftrightarrow0< a,b,c< 1\)

\(B=\dfrac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}=\dfrac{\left[\left(a+b\right)+\left(a+c\right)\right]\left[\left(a+b\right)+\left(b+c\right)\right]\left[\left(c+a\right)+\left(c+b\right)\right]}{\left(a+b+c-a\right)\left(a+b+c-b\right)\left(a+b+c-c\right)}\)\(\left\{{}\begin{matrix}a+b=x\\b+c=y\\c+a=z\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=2\\B=\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\end{matrix}\right.\)

\(B>0;B^2=\dfrac{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}{\left(xyz\right)^2}=\dfrac{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}{\left(xyz\right)^2}=\dfrac{\left(x+y\right)^2}{xy}.\dfrac{\left(y+z\right)^2}{yz}.\dfrac{\left(z+x\right)^2}{zx}\)\(\left\{{}\begin{matrix}\left(x+y\right)^2\ge4xy\\\left(y+z\right)^2\ge4yz\\\left(z+x\right)^2\ge4zx\end{matrix}\right.\) \(\Leftrightarrow B^2\ge64;B\ge8\) khi x=y=z;a=b=c=1/3

27 tháng 11 2018

mai lam

16 tháng 12 2018

Áp dụng BĐT AM-GM: \(VT\le\sum\dfrac{1}{\sqrt{a^2+1}.\sqrt{2a}.2\sqrt{bc}}=\sum\dfrac{1}{2\sqrt{2}\sqrt{a^2+1}}\)

Ta đi chứng minh \(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{b^2+1}}+\dfrac{1}{\sqrt{c^2+1}}\le\dfrac{3}{\sqrt{2}}\)

Giả sử c=max{a, b, c}.Suy ra \(c\ge1\) nên \(ab\le1\). Ta có bổ đề:

\(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{b^2+1}}\le\dfrac{2}{\sqrt{1+ab}}\)(*)

#cm: Áp dụng Bunyakovsky: \(VT_{(*)} \)\(\le\sqrt{2\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\right)}\)

Xét \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}-\dfrac{2}{ab+1}=\dfrac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\le0\)

Nên \(VT_{(*)}\)\(\le\sqrt{2.\dfrac{2}{ab+1}}=\dfrac{2}{\sqrt{ab+1}}\), suy ra đpcm.

Do đó \(VT\le\dfrac{2}{\sqrt{ab+1}}+\dfrac{1}{\sqrt{c^2+1}}=2\sqrt{\dfrac{c}{c+1}}+\dfrac{1}{\sqrt{c^2+1}}\)

# cm: \(2\sqrt{\dfrac{c}{c+1}}+\dfrac{1}{\sqrt{c^2+1}}\le\dfrac{3}{\sqrt{2}}\)

\(\Leftrightarrow2\sqrt{2c\left(c^2+1\right)}+\sqrt{2c+2}\le3\sqrt{\left(c+1\right)\left(c^2+1\right)}\)

\(\Leftrightarrow8c^3+10c+2+8\sqrt{c\left(c+1\right)\left(c^2+1\right)}\le9\left(c^3+c^2+c+1\right)\)

hay \(8\sqrt{\left(c^2+c\right)\left(c^2+1\right)}\le c^3+9c^2-c+7\) ($)

Áp dụng BĐT AM-GM cho VT của ($):

\(8\sqrt{\left(c^2+c\right)\left(c^2+1\right)}\le4\left(2c^2+c+1\right)\) .Ta chứng minh

\(8c^2+4c+4\le c^3+9c^2-c+7\) hay \(\left(c-1\right)^2\left(c+3\right)\ge0\) (đúng)

Vậy ta có đpcm. Dấu = xảy ra khi a=b=c=1