\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2015

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{a^2+a\left(b+c\right)+bc}\ge\sqrt{a^2+2a\sqrt{bc}+bc}=a+\sqrt{bc}\)

Tương tự: \(\sqrt{b+ac}\ge b+\sqrt{ca};\sqrt{c+ab}\ge c+\sqrt{ab}\)

\(\Rightarrow\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Xảy ra đẳng thức khi và chỉ khi \(a=b=c=\frac{1}{3}\)

20 tháng 9 2019

Èo, căng thế:

BĐT \(\Leftrightarrow\Sigma\sqrt{\left(a+b\right)\left(a+c\right)}\ge\Sigma a+\Sigma\sqrt{ab}\)(chú ý cái giả thiết a + b  + c = 1)

Thật vậy áp dụng BĐT Bunyakovski: \(\sqrt{\left(a+b\right)\left(a+c\right)}=\sqrt{\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{a}\right)^2+\left(\sqrt{c}\right)^2\right]}\)

\(\ge\sqrt{\left(\sqrt{a^2}+\sqrt{bc}\right)^2}=a+\sqrt{bc}\). Tương tự hai BĐT còn lại và cộng theo vế có ngay đpcm.

Đẳng thức xảy ra khi a = b = c = 1/3

11 tháng 12 2017

Ta chứng minh: \(\sqrt{a+bc}\ge a+\sqrt{bc}\)

Thật vậy, ta có:

\(a+bc\ge a^2+2a\sqrt{bc}+bc\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)

\(\Leftrightarrow1\ge a+2\sqrt{bc}\)

\(\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)

\(\Leftrightarrow b+c\ge2\sqrt{bc}\)(Đúng theo Cauchy)

Tương tự: \(\sqrt{b+ca}\ge b+\sqrt{ca}\)

\(\sqrt{c+ab}\ge c+\sqrt{ab}\)

Cộng vế theo vế các BĐT vừa chứng minh ta được đpcm.

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

16 tháng 5 2017

Ta có 

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự, ta có

\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)

Cộng vế theo vế của 3 bđt ta được đpcm

4 tháng 2 2021

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

4 tháng 2 2021

OMG !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1,

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)

NV
24 tháng 6 2020

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

Tương tự: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) ; \(\sqrt{\frac{ca}{b+ca}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{a+b}\right)\)

Cộng vế với vế: \(VT\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{c}{a+c}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

4 tháng 9 2017

5-6..thui..=>ko..hiểu

4 tháng 9 2017

Mình ko biết chắc đúng hết không,có gì mong bạn góp ý cho mình nha:

Ta có \(a+b+c=3\)

Áp dụng BĐT Cô-si ta có:

\(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow3\ge3\sqrt[3]{abc}\Leftrightarrow1\ge\sqrt[3]{abc}\)

\(\Leftrightarrow1\ge abc\)

Ta có:\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{\left(abc\right)^2}}=3\sqrt[3]{abc}=3\left(1\right)\)

Ta lại có \(\sqrt{abc}\ge\sqrt{1}=1\left(2\right)\)

Cộng \(\left(1\right)vs\left(2\right)\)lại ta có \(đpcm\)

Dấu \("="\)xảy ra khi \(a=b=c=1\)