\(\ge\) 4

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

a/( 1 + b^2 ) + b/( 1 + c^2 ) + c/( 1 + a^2 ) ≥ 3/2 

Ta có 

a/( 1 + b^2 ) = a - ab^2/( 1 + b^2 ) ≥ a - ab^2/2b = a - ab/2 

Tương tự ta có 

b/( 1 + c^2 ) ≥ b - bc/2 

c/( 1 + a^2 ) ≥ c - ac/2 

Cộng vào ta có 

a/( 1 + b^2 ) + b/( 1 + c^2 ) + c/( 1 + a^2 ) ≥ a + b + c - ( ab + bc + ac )/2 = 3 - ( ab + bc + ac )/2 

Xét ab + bc + ac 

Ta có 

a^2 + b^2 ≥ 2ab 
b^2 + c^2 ≥ 2bc 
c^2 + a^2 ≥ 2ac 

=> a^2 + b^2 + c^2 ≥ ab + bc + ac 

<=> a^2 + b^2 + c^2 + 2ac + 2bc + 2ab ≥ 3( ab + ac + bc ) 

<=> ( a + b + c )^2 ≥ 3( ab + ac + bc ) 

<=> ab + ac + bc ≤ 9:3 = 3 

=> 3 - ( ab + bc + ac )/2 ≥ 3 - 3/2 = 3/2 

=> a/( 1 + b^2 ) + b/( 1 + c^2 ) + c/( 1 + a^2 ) ≥ 3/2 

Bài 3) ↓ ( Chép của Lão Hạc ) 

Bài 2) P = a/( a + b ) + b/( b + c ) + c/( c + a ) 

<=> P = 1 - b/( a + b ) + 1 - c/( b + c ) + 1 - a/( c + a ) 

<=> P = 3 - [ b/( a + b ) + c/( b + c ) + a/( c + a ) ] 

Dùng cô si ta có 

a + b ≥ 2√ab 
b + c ≥ 2√bc 
a + c ≥ 2√ac 

=> ( a + b )( b + c )( a + c ) ≥ 8abc 

=> abc/( a + b )( b + c )( a + c ) ≤ 1/8 

Dùng cô si cho 3 số không âm ta có 

b/( a + b ) + c/( b + c ) + a/( c + a ) ≥ 3³√[ abc/( a + b )( b + c )( a + c )] 

Ta có 3³√[ abc/( a + b )( b + c )( a + c )] ≤ 3/2 

=> b/( a + b ) + c/( b + c ) + a/( c + a ) ≤ 3/2 

=> 3 - [ b/( a + b ) + c/( b + c ) + a/( c + a ) ] ≥ 3 - 3/2 = 3/2 

Vậy P min = 3/2 

Dấu = xảy ra khi a = b = c = 1 

4) B = ( 1 + x )( 1 + 1/y ) + ( 1 + y )( 1 + 1/x ) 
x^2 + y^2 = 1 
xy > 0 

B = 1 + 1/y + x + x/y + 1 + 1/x + y + y/x 

Ta có 

y + 1/y ≥ 2 
x + 1/x ≥ 2 
x/y + y/x ≥ 2 

=> B ≥ 8 

=> B min = 8 

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

8 tháng 5 2019

Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)

\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)

\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)

Nhân theo vế => ddpcm "=" khi a=b=c

8 tháng 5 2019

Câu hỏi dài nên mỗi ý mk làm thành 1 câu nha

23 tháng 8 2019

Ta có:

\(a+b+c\ge abc\) (gt)

mà \(a^2+b^2+c^2\ge a+b+c\forall a,b,c\ge0\) 

\(\Rightarrow a^2+b^2+c^2\ge abc\left(đpcm\right)\)

23 tháng 8 2019

nếu sd bổ đề thì ít nhất bạn cx cần nói sơ qua về nó hoặc cm nó ạ

AH
Akai Haruma
Giáo viên
8 tháng 10 2017

Lời giải:

a) Ta có:

\(a^2-b^2+c^2\geq (a-b+c)^2\)

\(\Leftrightarrow a^2-b^2+c^2\geq a^2+b^2+c^2-2ab-2bc+2ac\)

\(\Leftrightarrow 2ab+2bc\geq 2b^2+2ac\)

\(\Leftrightarrow ab+bc\geq b^2+ac\Leftrightarrow b(a-b)+c(b-a)\geq 0\)

\(\Leftrightarrow (a-b)(b-c)\geq 0\)

BĐT trên luôn đúng do \(a\geq b\geq c\)

Do đó ta có đpcm.

b) \(a^2-b^2+c^2-d^2\geq (a-b+c-d)^2\)

\(\Leftrightarrow a^2-b^2+c^2-d^2\geq (a-b)^2+(c-d)^2+2(a-b)(c-d)\)

\(\Leftrightarrow a^2-b^2+c^2-d^2\geq a^2+b^2+c^2+d^2-2ab-2cd+2ac-2ad-2bc+2bd\)

\(\Leftrightarrow 2(ab+cd+ad+bc)\geq 2(b^2+d^2)+2ac+2bd\)

\(\Leftrightarrow ab+cd+ad+bc\geq b^2+d^2+ac+bd\)

\(\Leftrightarrow b(a-b)+d(c-d)+d(a-b)-c(a-b)\geq 0\)

\(\Leftrightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)

BĐT trên luôn đúng do:

\(\left\{\begin{matrix} d\geq 0\\ a\geq b\rightarrow a-b\geq 0\\ c\geq d\rightarrow c-d\geq 0\\ b\geq d\rightarrow b+d-c\geq 0\end{matrix}\right.\Rightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)

Do đó ta có đpcm.

1 tháng 8 2017

 Ngọc Anh Dũngo0oNguyễno0oHuy hoàng indonaca0o0 khùng mà 0o0Tình bạn vĩnh cửu Phương DungHacker Mũ Trắng

1 tháng 8 2017

Cái đề là  \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}???\)