Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3+c^3=3abc\)
<=> \(a^3+b^3+c^3-3abc=0\)
<=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
đến đây ez tự làm nốt nhé, ko ra ib mk
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
\(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
đpcm
ta có \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+a+b+c=a+b+c\)
\(\Leftrightarrow\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=1\)
Đặt \(\frac{a-b}{c}=x;\frac{b-c}{a}=y;\frac{c-a}{b}=z\)\(\Rightarrow\frac{c}{a-b}=\frac{1}{x};\frac{a}{b-c}=\frac{1}{y};\frac{b}{c-a}=\frac{1}{z}\)
\(\Rightarrow P.Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\)
\(=3+\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)
Ta có : \(\frac{y+z}{x}=\left(y+z\right)\frac{1}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\frac{c}{a-b}=\left(\frac{b^2-bc+ac-a^2}{ab}\right)\frac{c}{a-b}\)
\(=\frac{\left(b-a\right)\left(a+b-c\right)}{ab}\frac{c}{a-b}=\frac{\left(c-a-b\right)c}{ab}=\frac{2c^2}{ab}\)( a + b + c = 0 suy ra c = -a-b )
Tương tự : \(\frac{x+z}{y}=\frac{2a^2}{bc};\frac{x+y}{z}=\frac{2b^2}{ac}\)
\(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=\frac{2\left(a^3+b^3+c^3\right)}{abc}=\frac{2.3abc}{abc}=6\)
( vì a + b + c = 0 . CM được a3 + b3 + c3 = 3abc )
\(\Rightarrow P.Q=3+6=9\)