\(\frac{b.c}{a}+\frac{a.c}{b}+\frac{a.b}{c}\ge a+b+c\)( Không...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

Áp dụng \(x^2+y^2+z^2\ge xy+yz+zx\)Dấu "=" xảy ra khi x=y=z 

\(\Leftrightarrow b^2c^2+c^2a^2+a^2b^2\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow\frac{b^2c^2+c^2a^2+a^2b^2}{abc}\ge a+b+c\)

\(\frac{b.c}{a}+\frac{c.a}{b}+\frac{a.b}{c}\ge a+b+c\)

Dấu "=" xảy ra khi: a=b=c

26 tháng 12 2017

Với a,b,c>0 .

áp dụng bđt cosi,ta có:

b.c/a+c.a/b>_2c (1)

c.a/b+a.b/c>_2a (2)

a.b/c+b.c/a>_2b ((3)

Cộng (1),,(2),,(3) vế theo vế ,ta được:

2.(b.c/a+c.a/b+a.b/c)>_ 2.(a+b+c)

=>b.c/a+c.a/b+a.b/c>_ a+b+c (đpcm)

30 tháng 5 2019

Ta có 

\(\frac{a^2}{a+b^2}=\frac{a^2+ab^2-ab^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Khi đó 

\(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab+bc+ac\right)\)

Mà \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)

=> \(A\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)( ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

30 tháng 5 2019

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\)

Do \(a+b^2\ge2b\sqrt{a}\)

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Do \(\sqrt{a}\le\frac{a+1}{2}\)

19 tháng 6 2020

CM theo bdt co-si

Áp dụng bdt Co - si cho cặp số dương a2/c và c

Ta có: \(\frac{a^2}{c}+c\ge2\sqrt{\frac{a^2}{c}.c}=2a\)(1)

CMTT: \(\frac{b^2}{a}+a\ge2b\)(2)

         \(\frac{c^2}{b}+b\ge2c\)(3)

Từ (1); (2) và (3) cộng vế theo vế, ta có:

\(\frac{a^2}{c}+c+\frac{b^2}{a}+a+\frac{c^2}{b}+b\ge2a+2b+2c\)

<=> \(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge2a+2b+2c-a-b-c=a+b+c\)(Đpcm)

19 tháng 6 2020

\(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra <=> a = b = c

19 tháng 6 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(\ge\frac{1}{2}\frac{4}{a+b}+\frac{1}{2}\frac{4}{b+c}+\frac{1}{2}\frac{4}{c+a}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Dấu "=" xảy ra <=> a = b = c

20 tháng 3 2018

dự đoán của Thần thánh

\(\frac{ab}{a^2+b^2}=\frac{a^2}{2a^2}=\frac{1}{2}\)

\(VT=\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)

\(p=\frac{ab}{a^2+b^2}+....+\frac{ca}{c^2+a^2};A=\frac{1}{4}\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)\)

áp dụng BDT cô si ta có

\(\frac{ab}{a^2+b^2}+\frac{\left(a^2+b^2\right)}{\frac{4}{9}}\ge2\sqrt{\frac{ab}{\frac{4}{9}}}=\frac{2}{\frac{2}{3}}\sqrt{ab}=3\sqrt{ab}\)

tương tự với các BDT còn lại suy ra

\(p+\frac{9}{4}\left(2a^2+2b^2+2c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

\(P+\frac{9}{2}\left(a^2+b^2+c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

áp dụng BDT cô si ta có

\(a^2+\frac{1}{9}\ge2\sqrt{\frac{a^2}{9}}=\frac{2a}{3}\)

tương tự với b^2+c^2 ta được

\(a^2+b^2+c^2+\frac{1}{3}\ge\frac{2}{3}\left(a+b+c\right)=\frac{2}{3}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\) 

" thay 1/3 vào ta được

\(p+\frac{3}{2}\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

áp dụng BDT cô si dạng " Rei " " luôn đúng với những bài ngược dấu "

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[3]{abc}\)

mà \(a+b+c\ge3\sqrt[3]{abc}\) 

thay a+b+c=1 vào ta được

\(P+\frac{3}{2}\ge3\Leftrightarrow P\ge\frac{6}{2}-\frac{3}{2}=\frac{3}{2}\) " 1 "

bây giờ tính nốt con \(A=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

áp dụng BDT \(\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a+b+c}\)

\(A=\frac{9}{4}.\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{4}\left(\frac{1}{a+b+c}\right)\)

mà a+b+C=1 suy ra

\(A\ge\frac{9}{4}\) "2"

từ 1 và 2 suy ra

\(VT=P+A\ge\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)

" đúng với dự đoán của thần thánh "

30 tháng 4 2017

\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\frac{a+b}{2}-\sqrt{ab}\ge0\)

\(\Leftrightarrow\frac{a+b-2\sqrt{ab}}{2}\ge0\)

\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\) (luôn đúng)

Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\) (1)

\(\sqrt{ab}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}\)

\(\Leftrightarrow\sqrt{ab}\ge\frac{2ab}{a+b}\)

\(\Leftrightarrow\sqrt{ab}\ge\frac{2\sqrt{ab}^2}{a+b}\)

\(\Leftrightarrow\frac{2\sqrt{ab}}{a+b}\le1\)

\(\Leftrightarrow\frac{2\sqrt{ab}}{a+b}-1\le0\)

\(\Leftrightarrow\frac{2\sqrt{ab}-a-b}{a+b}\le0\)

\(\Leftrightarrow\frac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{a+b}\le0\) (luôn đúng)

Vậy \(\sqrt{ab}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}\) (2)

Từ (1) ; (2) \(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}\) (đpcm)

6 tháng 4 2020

Bài làm

Đặt x = a + b , y = b + c , z = c + a

Thì \(a=\frac{x+z-y}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)

Ta có: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)

\(\Leftrightarrow\frac{x+z-y}{2}.\frac{1}{y}+\frac{x+y-z}{2}.\frac{1}{z}+\frac{y+z-x}{2}.\frac{1}{x}\)

\(\Leftrightarrow\frac{x+z-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)

\(\Leftrightarrow-3.\frac{1}{2}+\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)\)

\(\Leftrightarrow-\frac{3}{2}+\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\) ( đpcm )

Cre chi tiết: Bấm vào đây