\(a^5+b^5+c^5+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

áp dụng Cô-si ta có:

\(a^5+\frac{1}{a}+1+1\ge4\sqrt[4]{a^5.\frac{1}{a}.1.1}=4a\)

\(b^5+\frac{1}{b}+1+1\ge4\sqrt[4]{b^5.\frac{1}{b}.1.1}=4b\)

\(c^5+\frac{1}{c}+1+1\ge4\sqrt[4]{c^5.\frac{1}{c}.1.1}=4c\)

\(\Rightarrow a^5+b^5+c^5+1+1+1+1+1+1\ge4a+4b+4c\)

\(\Leftrightarrow a^5+b^5+c^5\ge4\left(a+b+c\right)-6=4.3-6=6\)

Dấu = xảy ra khi a=b=c=1

16 tháng 11 2018

Vẫn áp dụng cô si nhưng lần này sẽ khác cách của Thành:

Áp dụng BĐT Côsi,ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Suy ra \(VT\ge a^5+b^5+c^5+3\sqrt[3]{\frac{1}{abc}}\)

Suy ra \(VT+1+1\ge a^5+b^5+c^5+1+1+3\sqrt[3]{\frac{1}{abc}}\) (1)

Áp dụng Côsi,ta có: \(a^5+b^5+c^5+1+1\ge5\sqrt[5]{1a^5b^5c^51}=5abc\)(2)

Từ (1) và (2) suy ra \(VT+1+1\ge5abc+3\sqrt[3]{\frac{1}{abc}}\)

\(VT\ge5abc+3\sqrt[3]{\frac{1}{abc}}-2\).Ta cần chứng minh \(5abc+3\sqrt[3]{\frac{1}{abc}}-2\ge6\Leftrightarrow5abc+3\sqrt[3]{\frac{1}{abc}}\ge8\) (3)

Thật vậy ta có: \(\sqrt[3]{abc}\le\frac{a+b+c}{3}\Rightarrow abc\ge\frac{a+b+c}{3}\).Áp dụng vào,ta có:

\(abc\ge\frac{a+b+c}{3}=1\) (do a + b + c = 3).

Thay vào (3),ta có:\(5abc+3\sqrt[3]{\frac{1}{abc}}\ge8\) suy ra \(5abc+3\sqrt[3]{\frac{1}{abc}}-2\ge6\) suy ra đpcm

2 tháng 12 2018

Ta có:\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

Để \(a^2+b^2+c^2=\frac{5}{3}\) thì \(ab+bc+ca=0\)

Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc}{abc}+\frac{ca}{abc}+\frac{ab}{abc}=\frac{bc+ca+ab}{abc}\)

Thay ab + bc + ca = 0 vào,ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ca+ab}{abc}=\frac{0}{abc}=0\)

Mà a,b,c > 0 nên abc > 0 do đó \(\frac{1}{abc}>0\) hay \(\frac{1}{abc}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{1}{abc}\) 

Suy ra đpcm.

2 tháng 12 2018

bn ơi tại sao ab+bc+ac=0

mk k hiểu chỗ đó

25 tháng 5 2019

Áp dụng bđt AM-GM:

\(a^5+\frac{1}{a}\ge2\sqrt{a^5.\frac{1}{a}}=2a^2\)

\(b^5+\frac{1}{b}\ge2\sqrt{b^5.\frac{1}{b}}=2b^2\)

\(c^5+\frac{1}{c}\ge2\sqrt{c^5.\frac{1}{c}}=2c^2\)

\(\Rightarrow VT\ge2\left(a^2+b^2+c^2\right)\ge\frac{2}{3}\left(a+b+c\right)^2=6\)

\("="\Leftrightarrow a=b=c=1\)

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

15 tháng 10 2017

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

15 tháng 10 2017

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

26 tháng 9 2016

Ta có \(\frac{b+c+6}{1+a}=\frac{11-a}{1+a}=-1+\frac{12}{1+a}\)

\(\frac{c+a+4}{2+b}=-1+\frac{12}{2+b}\)

\(\frac{a+b+3}{3+c}=-1+\frac{12}{3+c}\)

Mà \(\frac{1}{1+a}+\frac{1}{2+b}+\frac{1}{3+c}\ge\)

\(\frac{3^2}{1+2+3+a+b+c}=\frac{3}{4}\)

Từ đó => VT \(\ge\)-3 + \(12\frac{3}{4}\)= 6

15 tháng 5 2020

Đặt x=a+1; y=b+2; z=3+c (x;y;z>0)

\(VT=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

\(=\frac{y}{x}+\frac{x}{y}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\)

\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}=6\)

Dấu "=" xảy ra <=> a=3; b=2; c=1

NV
11 tháng 7 2020

\(VT=\frac{a}{\sqrt{a-1}}+\frac{b}{\sqrt{b-1}}+\frac{c}{\sqrt{c-1}}=\frac{a-1+1}{\sqrt{a-1}}+\frac{b-1+1}{\sqrt{b-1}}+\frac{c-1+1}{\sqrt{c-1}}\)

\(VT\ge\frac{2\sqrt{a-1}}{\sqrt{a-1}}+\frac{2\sqrt{b-1}}{\sqrt{b-1}}+\frac{2\sqrt{c-1}}{\sqrt{c-1}}=6\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=2\)

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)