Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\)
\(\sqrt[3]{\frac{4}{9}}A=\sqrt[3]{\frac{4}{9}}.\left(\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\right)\)
\(\le\frac{a+b+\frac{2}{3}+\frac{2}{3}}{3}+\frac{b+c+\frac{2}{3}+\frac{2}{3}}{3}+\frac{c+a+\frac{2}{3}+\frac{2}{3}}{3}\)
\(=\frac{4}{3}+\frac{2}{3}\left(a+b+c\right)=2\)
\(\Rightarrow A\le\frac{2}{\sqrt[3]{\frac{4}{9}}}=\sqrt[3]{18}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT Holder ta có:
\(A^3=\left(\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\right)^3\)
\(\le\left(1+1+1\right)\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=9\cdot2\left(a+b+c\right)=9\cdot2=18\)
\(\Rightarrow A^3\le18\Rightarrow A\le\sqrt[3]{18}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT AM-GM
\(\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{a+b+\frac{2}{3}+\frac{2}{3}}{3}\)
\(\sqrt[3]{\left(b+c\right).\frac{2}{3}.\frac{2}{3}}\le\frac{b+c+\frac{2}{3}+\frac{2}{3}}{3}\)
\(\sqrt[3]{\left(c+a\right).\frac{2}{3}.\frac{2}{3}}\le\frac{c+a+\frac{2}{3}+\frac{2}{3}}{3}\)
\(\Rightarrow S.\sqrt[3]{\frac{2}{3}.\frac{2}{3}}\le\frac{2\left(a+b+c\right)+\frac{2}{3}.6}{3}=\frac{2.1+4}{3}=2\)
\(\Leftrightarrow S\le2:\sqrt[3]{\frac{4}{9}}=\frac{2.\sqrt[3]{9}}{\sqrt[3]{4}}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a,b,c>0\\a+b+c=1\\a+b=b+c=c+a=\frac{2}{3}\end{cases}\Leftrightarrow a=b=c=\frac{1}{3}}\)
Vậy...
Sử dụng BĐT AM-GM ta có:
\(\sqrt[3]{a+b}=\frac{\sqrt[3]{\frac{2}{3}.\frac{2}{3}.\left(a+b\right)}}{\sqrt[3]{\frac{4}{9}}}\le\frac{\frac{2}{3}+\frac{2}{3}+a+b}{3.\sqrt[3]{\frac{4}{9}}}\)
Tương tự cộng lại suy ra
\(S\le\frac{6.\frac{2}{3}+2\left(a+b+c\right)}{3.\sqrt[3]{\frac{4}{9}}}=\frac{6}{3.\sqrt[3]{\frac{4}{9}}}=\sqrt[3]{18}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Dễ thấy theo AM - GM ta có:
\(P\ge3\sqrt[3]{\sqrt{\frac{a+b}{c+ab}\cdot\sqrt{\frac{b+c}{a+bc}}\cdot\sqrt{\frac{c+a}{b+ca}}}}\)
Ta cần chứng minh \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(c+ab\right)\left(a+bc\right)\left(b+ca\right)\)
Mặt khác theo AM - GM:
\(\left(c+ab\right)\left(a+bc\right)\le\frac{\left(c+ab+a+bc\right)^2}{4}=\frac{\left(b+1\right)^2\left(a+c\right)^2}{4}\)
Tương tự thì:
\(\left(c+ab\right)\left(a+bc\right)\left(b+ca\right)\le\frac{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\)
Ta cần chứng minh:\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le8\)
Áp dụng tiếp AM - GM:
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le\frac{\left(a+1+b+1+c+1\right)^3}{27}=8\)
Vậy ta có đpcm
Chuyên Phan năm nay :))
Lời giải:
Ta có:
\(A=\sqrt[3]{a+b+1}+\sqrt[3]{b+c+1}+\sqrt[3]{a+c+1}\)
\(\Rightarrow A\sqrt[3]{9}=\sqrt[3]{9(a+b+1)}+\sqrt[3]{9(b+c+1)}+\sqrt[3]{9(a+c+1)}\)
Áp dụng BĐT Cauchy ta có:
\(\sqrt[3]{9(a+b+1)}\leq \frac{3+3+(a+b+1)}{3}\)
\(\sqrt[3]{9(b+c+1)}\leq \frac{3+3+(b+c+1)}{3}\)
\(\sqrt[3]{9(c+a+1)}\leq \frac{3+3+(c+a+1)}{3}\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\sqrt[3]{9}A\leq \frac{7+a+b}{3}+\frac{7+b+c}{3}+\frac{7+a+c}{3}\)
\(\Leftrightarrow \sqrt[3]{9}A\leq \frac{21+2(a+b+c)}{3}=\frac{21+2.3}{3}=9\)
\(\Rightarrow A\leq \frac{9}{\sqrt[3]{9}}=3\sqrt[3]{3}\)
Vậy GTLN của $A$ là \(3\sqrt[3]{3}\)
Dấu bằng xảy ra khi \(a=b=c=1\)
\(\left\{{}\begin{matrix}x=\sqrt[3]{a+b+1}\\y=\sqrt[3]{b+c+1}\\z=\sqrt[3]{a+c+1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=A\\x^3+y^3+z^3=9\end{matrix}\right.\)
\(A^3=9+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
BDT ; \(3.\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\dfrac{8}{9}\left(x+y+z\right)^3=\dfrac{8}{9}A^3\)\(\Leftrightarrow A^3\le9+\dfrac{8}{9}A^3\Leftrightarrow A^3\le81;A\le\sqrt[3]{81}=3.\sqrt{3}\)
dang thuc ; x=y=z <=> a=b=c=1
Từ giả thiết, ta có
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\Rightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\)
=>\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\)
Tháy vào, ta có M=\(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+a}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+b}{\sqrt{b}+\sqrt{c}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+c}{\sqrt{a}+\sqrt{c}}\)
=\(\frac{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\frac{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}{\sqrt{b}+\sqrt{c}}+\frac{\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{c}}\)
=\(\sqrt{a}+\sqrt{c}+\sqrt{b}+\sqrt{a}+\sqrt{c}+\sqrt{b}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=4\)
Vậy M=4
^_^
bài n t vừa làm mà, vào link này nhé
https://olm.vn/hoi-dap/question/1129328.html
\(\sqrt{5a^2+38ab+21b^2}=\sqrt{5a^2+8ab+30ab+21b^2}\le\sqrt{9a^2+30ab+25b^2}=3a+5b\)
Làm nốt :D
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
bạn giải giùm mình đc ko . chiều nay mình có bài kiểm tra
\(F^2=\left(\sqrt{a+b}+\sqrt{a+c}+\sqrt{b+c}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+a+c+b+c\right)=6\left(a+b+c\right)=6\)
=> F max = \(\sqrt{6}\) <=> a=b=c =1