Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)\)
Do a; b; c > 0 => A > 0
Giả sử \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{a+b}{bc+a^2}-\frac{b+c}{ac+b^2}-\frac{c+a}{ab+c^2}\ge0\)
\(\Leftrightarrow\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4a^2c^2-c^4a^2b^2}{A}\ge0\)( tự quy đồng rồi rút gọn nhé, làm chi tiết dài lắm )
\(\Leftrightarrow\frac{2a^4b^4+2b^4c^4+2c^4a^4-2a^4b^2c^2-2b^4a^2c^2-2c^4a^2b^2}{A}\ge0\)
\(\Leftrightarrow\frac{\left(a^2b^2+b^2c^2\right)^2+\left(b^2c^2+c^2a^2\right)^2+\left(c^2a^2+a^2b^2\right)^2}{A}\ge0\)(đúng)
Vậy \(\frac{a+b}{bc+a^2}+\frac{b+c}{ca+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(đpcm)
Ta có: \(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{a+b}{bc+a^2}-\frac{b+c}{ac+b^2}-\frac{c+a}{ab+c^2}\ge0\)
\(\Leftrightarrow\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)
\(\Leftrightarrow\frac{2a^4b^4+2b^4c^4+2c^4a^4-2a^4b^2c^2-2b^4c^2a^2-2c^4a^2b^2}{2abc\left(bc+a^2\right)\left(ca+b^2\right)\left(ab+c^2\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)^2+\left(c^2a^2-a^2b^2\right)^2}{2abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)(Đúng) (do a, b, c>0 )
bạn ơi mik chỉ làm ngếu ngáo thôi nhé :)) đúng thì đúng mà sai thì thôi nhé :)) cách mình tự chế nhé
đặt \(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}=Pain\)
áp dụng định lí six paths of Pain :) ta có
\(\frac{\left(a+b\right)}{a^2+bc}=\frac{\left(a+b\right)}{\frac{\left(a+b\right)}{\left(a+c\right)}}=\frac{1}{\left(a+c\right)}\) ( định lí Six Paths of Pain ) hì hì
thay vào ta được :)
\(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
áp dụng cô si sáp cho 2 số ta có
\(\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\) luôn đúng
\(\frac{1}{b+a}\le\frac{1}{2}\left(\frac{1}{b}+\frac{1}{a}\right)\) luôn đúng
\(\frac{1}{c+b}\le\frac{1}{2}\left(\frac{1}{c}+\frac{1}{b}\right)\) luôn đúng
cộng các vế lại ta được và rút 2/2 ta được :))
\(Pain\le\frac{1}{2}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)=\frac{2}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
hình như BDT đã được chứng minh :))
theo bài của bạn Phạm quốc cường ta có :))
\(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) luôn đúng :))
tức là \(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}=\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)luôn đúng :))
tức là định Lí six paths of Pain luôn đúng :))
dấu = xảy ra khi nào thì mình éo biết được :))
: các thành phần trẩu tre éo làm thì đừng tích sai cho mình nhé :)) mik ms lớp 7 thôi còn gà lắm :))
\(VT=\Sigma_{cyc}\frac{1}{a^2-ab+b^2}=\Sigma_{cyc}\frac{abc}{a^2-ab+b^2}=\Sigma_{cyc}\frac{abc}{\left(a-b\right)^2+ab}\)
\(\le\Sigma_{cyc}\frac{abc}{ab}=\Sigma_{cyc}c=a+b+c=VP\)
Đẳng thức xảy ra khi \(a=b=c=1\)
P/s: Mình dùng kí hiệu \(\Sigma_{cyc}\) cho gọn, khi làm bạn tự viết rõ ra.
Ta có : \(\left(a+b\right)^2\ge4ab\Leftrightarrow\frac{ab}{a+b}\le\frac{a+b}{4}\)
Tương tự : \(\frac{bc}{b+c}\le\frac{b+c}{4}\) ; \(\frac{ac}{a+c}\le\frac{a+c}{4}\)
Cộng các bđt trên theo vế được :
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{c+a}\le\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
\(\sqrt{\frac{a}{a+bc}}=\frac{a}{\sqrt{a^2+abc}}=\frac{a}{\sqrt{a^2+ab+bc+ca}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Tương tự \(\sqrt{\frac{b}{b+ca}}=\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}};\sqrt{\frac{c}{c+ab}}=\frac{c}{\left(c+a\right)\left(c+b\right)}\)
\(\Rightarrow VT=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
\(\le\frac{a}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{b}{2}\left(\frac{1}{b+c}+\frac{1}{b+a}\right)+\frac{c}{2}\left(\frac{1}{c+a}+\frac{1}{c+b}\right)\)
\(=\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{c}{a+c}\right)\)
\(=\frac{3}{2}\)
Dấu "=" xảy ra tại \(a=b=c=3\)
1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)
\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được
\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c
2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0
Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)
\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được
\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)
Cộng 3 bđt trên lại ta được đpcm
Đặt A= abc(bc+a2)(ac+b2)(ab+c2)
Giả sử 1/a + /b + 1/c - (a+b)/(bc+a2) - (b+c)/(ac+b2) - (c+a)/(ab+c2) >=0
<=> (a4b4+b4c4+c4a4-a4b2c2-b4a2c2-c4a2b2)/A >= 0
<=> (2a4b4+2b4c4+2c4a4-2a4b2c2-2b4a2c2-2c4a2b2)/2A >= 0
<=> (a2b2-b2c2)2+(b2c2-c2a2)2+(c2a2-a2b2)2/2A >= 0 (đúng với mọi a,b,c)
mk chỉ lm theo cách hiểu của mk thôi!nếu ko đúng thì thông cảm nha!
giả sử: \(a\ge b\ge c>0\)(ko mất tính tổng quát)
\(\Rightarrow a^2\ge ac\)\(\Leftrightarrow a^2+bc\ge ac+bc\) (vì b>0;c>0)
\(\Leftrightarrow a^2+bc\ge c\left(a+b\right)\)
\(\Leftrightarrow\frac{a+b}{a^2+bc}\le\frac{1}{c}\) (vì a;b;c>0) (1)
c/m tương tự ta đc: \(\frac{b+c}{ac+b^2}\le\frac{1}{a};\) (2)
\(\frac{c+a}{ab+c^2}\le\frac{1}{b}\) (3)
từ (1),(2),(3)=>đpcm