Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Holder:
\(\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)^2\left[a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\right]\ge\left(a^2+b^2+c^2\right)^3\)
Mặt khác:
\(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\ge\dfrac{3}{2}\left(a^2b^2+b^2c^2+c^2a^2+abc\left(a+b+c\right)\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2\ge\dfrac{3}{4}\left[a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\right]\)
\(\Rightarrow\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)^2\ge\dfrac{3}{4}\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\sqrt{3}}{2}\sqrt{a^2+b^2+c^2}\)
\(\Rightarrow P\ge\dfrac{\sqrt{3}}{2}\sqrt{a^2+b^2+c^2}+\dfrac{4}{\sqrt{a^2+b^2+c^2+1}}\)
Đặt \(\sqrt{\dfrac{a^2+b^2+c^2}{3}}=x>0\)
\(\Rightarrow P\ge\dfrac{3x}{2}+\dfrac{4}{\sqrt{3x^2+1}}\)
Ta sẽ chứng minh \(P\ge\dfrac{7}{2}\)
Thật vậy, với \(x\ge\dfrac{7}{3}\Rightarrow P>\dfrac{3x}{2}\ge\dfrac{7}{2}\) (đúng)
Với \(0< x\le\dfrac{7}{3}\) ta cần chứng minh:
\(\dfrac{3x}{2}+\dfrac{4}{\sqrt{3x^2+1}}\ge\dfrac{7}{2}\Leftrightarrow\dfrac{4}{\sqrt{3x^2+1}}\ge\dfrac{7-3x}{2}\)
\(\Leftrightarrow64\ge\left(7-3x\right)^2\left(3x^2+1\right)\)
\(\Leftrightarrow3\left(x-1\right)^2\left(-9x^2+24x+5\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left[3x\left(7-3x\right)+3x+5\right]\ge0\) (đúng)
Vậy \(P_{min}=\dfrac{7}{2}\) khi \(x=1\) hay \(a=b=c=1\)
a) Gọi q là công sai của cấp số nhân. Ta có: \(a;b=aq;c=aq^2\).
\(a^2b^2c^2\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=\dfrac{b^2c^2}{a}+\dfrac{a^2c^2}{b}+\dfrac{a^2b^2}{c}\)
\(=\dfrac{\left(a.q\right)^2\left(a.q^2\right)^2}{a}+\dfrac{a^2\left(aq^2\right)^2}{aq}+\dfrac{a^2\left(aq\right)^2}{aq^2}\)
\(=\dfrac{a^2q^2a^2q^4}{a}+\dfrac{a^2a^2q^4}{aq}+\dfrac{a^2a^2q^2}{aq^2}\)
\(=a^3q^6+a^3q^3+a^3\)
\(=\left(a^2q\right)^3+\left(aq\right)^3+a^3\)
\(=c^3+b^3+a^3=a^3+b^3+c^3\).
b) Gọi q là công bội của của cấp số nhân.
Ta có: \(a;b=aq;c=aq^2;d=aq^3\).
\(\left(ab+bc+cd\right)^2=\left(a.aq+aq.aq^2+aq^2.aq^3\right)^2\)
\(=\left(a^2q+a^2q^3+a^2q^5\right)^2=a^4q^2\left(1+q^2+q^4\right)^2\). (1)
\(\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)\)\(=\left(a^2+a^2q^2+a^2q^4\right)\left(a^2q^2+a^2q^4+a^2q^6\right)\)
\(=a^2\left(1+q^2+q^4\right)a^2q^2\left(1+q^2+q^4\right)\)
\(=a^4q^2\left(1+q^2+q^4\right)^2\). (2)
So sánh (1) và (2) ta có điều phải chứng minh.
Áp dụng bđt Schwarz ta có:
\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).
1: \(Q=\dfrac{ab\left(a-b\right)}{ab}\cdot\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\left(\sqrt{a}+\sqrt{b}\right)^2=a+2\sqrt{ab}+b\)
2: \(=\dfrac{-1+\sqrt{5}-\sqrt{5}+\sqrt{9}-...-\sqrt{2001}+\sqrt{2005}}{4}\)
\(=\dfrac{\sqrt{2005}-1}{4}\)
TenAnh1 TenAnh1 A = (-4.36, -6.06) A = (-4.36, -6.06) A = (-4.36, -6.06) B = (11, -6.06) B = (11, -6.06) B = (11, -6.06)
\(M=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{7}{ab+bc+ca}\)
\(M\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}+\dfrac{7}{ab+bc+ca}=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}\)
\(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow M\ge\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}=9+\dfrac{7.3}{\left(a+b+c\right)^2}=9+21=30\)
\(Min_M=30\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Áp dụng BĐT Svacxo
\(m\text{≥}\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}\)
\(=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{7}{ab+bc+ca}\)
≥ \(\dfrac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)\(+\dfrac{7}{ab+bc+ca}\)
\(=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}\)
CM BĐT: \(a^2+b^2+c^2\text{≥}ab+bc+ca\)
⇔ \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\text{≥}0\) (luôn đúng)
⇒ \(\left(a+b+c\right)^2\text{≥}3\left(ab+bc+ca\right)\)
⇒ \(\dfrac{\left(a+b+c\right)^2}{3}\text{≥}ab+bc+ca\)
⇒ \(m\text{≥}\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{\dfrac{\left(a+b+c\right)^2}{3}}=9+21=30\)
(vì a+b+c=1)
Vậy...